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ABSTRACT

Data physicalization is gaining popularity in public and educational
contexts due to its potential to make abstract data more tangible
and understandable. Despite its growing use, there remains a
significant gap in our understanding of how large-size physical
visualizations compare to their digital counterparts in terms of
user comprehension and memory retention. This study aims
to bridge this knowledge gap by comparing the effectiveness of
visualizing school building history data on large digital screens
versus large physical models. Our experimental approach involved
32 participants who were exposed to one of the visualization
mediums. We assessed their user experience and immediate under-
standing of the content, measured through tests after exposure, and
evaluated memory retention with follow-up tests seven days later.
The results revealed notable differences between the two forms
of visualization: physicalization not only facilitated better initial
comprehension but also significantly enhanced long-term memory
retention. Furthermore, user feedback on usability was also higher
on physicalization. These findings underscore the substantial
impact of physicalization in improving information comprehension
and retention. This study contributes crucial insights into future
visualization media selection in educational and public settings.

Index Terms: Visualization; Physicalization; Digitization; Mem-
orability

1 INTRODUCTION

In an era characterized by an overwhelming abundance of infor-
mation, the role of visualization has become pivotal in ensuring
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the effective comprehension and retention of data. As individuals
and organizations generate and consume vast volumes of data, the
transformation of this data into accessible and memorable formats
is crucial for cognitive development and adaptive capabilities [19].
Visualization, as a unique method of representing data, plays a cen-
tral role in this process, enabling a deep and intuitive understanding
of complex datasets [18, 33].

Recent technological advancements, such as 3D printing and
laser cutting [2, 5], have enabled the creation of physical models
with greater precision and speed, thus enhancing the accessibility
of physicalization in visualization. Physicalization, which involves
the presentation of data on tangible models, has been increasingly
explored and applied in visualization fields. This medium has
shown potential to complement or even surpass digital forms in
certain scenarios. For instance, Swedish global health specialist
Hans Rosling used physical commonplace items (LEGO blocks,
toilet paper rolls, etc) to illustrate data regarding global devel-
opment issues in a TED talk [6], which allows the audience to
capture and understand these professional data in a short period
of time. Also, physicalization was used to show four-dimensional
blood flow data [2] and the findings revealed that physicalization
enhanced the audience’s understanding of the data in a more lucid
and straightforward manner, enabling them to swiftly compare data
relationships among various segments.

Despite the growing prevalence of physicalization, our under-
standing of its effectiveness remains limited. Currently, the data
physicalization research lie in its focus on small-scale and simple
visual forms, such as bar charts [29] and maps [15], typically
not exceeding dimensions of 0.6 square meters (hand-held) [13].
However, these findings are difficult to apply directly to larger-scale
physicalizations because previous research has already indicated
that size significantly affects user perception and experience of
data [8]. Large-scale physicalizations are becoming increasingly
common in various contexts, such as teaching students the timing of
significant historical events [6], displaying meteorite landing data
in museums [23], and presenting abstract data to help audiences
understand the content [6].

This study aims to bridge this gap by investigating the efficacy of
large-scale data physicalizations compared to screen-based digital
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forms. Also, we examine complex visualizations as opposed to
simpler forms like bar charts Fig. 2-A2,A3 and maps Fig. 2-Al.
Specifically, our research compared two table-sized visualization
media on their impact on user experience, immediate compre-
hension, and memory retention using campus building history
data based on 3D annual ring shapes. Through this comparative
experiment, we seek to provide valuable insights for designers
and developers in selecting appropriate visualization and display
mediums. Ultimately, this research aims to enhance the public’s
ability to acquire information and learn in communal spaces (see
study overview in Fig. 2).

Our contributions to the field of data visualization are multi-
faceted. Firstly, we introduce a novel design for data physical-
ization based on spatiotemporal data. This design communicates
the intended information clearly and intuitively. Secondly, our
research provides a robust comparative analysis of digital and
physical data representations. We conducted a comprehensive
evaluation on four dimensions—response time, user experience,
information comprehension, and memory retention—employing
both qualitative and quantitative methods. This dual approach
allows us to draw nuanced insights into how different mediums
affect the absorption and recall of information, providing a detailed
understanding of the cognitive and perceptual dynamics at play.
Lastly, the reflections from our study represent our third major
contribution. These recommendations offer practical guidance for
future designers and developers on choosing the most effective
mediums for data visualization. By outlining the strengths and
limitations observed in our experiments, we equip practitioners
with the knowledge to enhance the efficacy of educational and
public displays, thereby improving public learning and information
dissemination in various settings. These contributions collectively
advance the field of data visualization, pushing forward the bound-
aries of how data is represented and interacted with in both digital
and physical forms.

2 RELATED WORK

Our work builds upon previous research on data physicalization and
its comparison with other visualization methods.

2.1 Data Physicalization

Data physicalization transforms abstract data into tangible forms,
enhancing haptic exploration and problem-solving [11]. This
method is widely used across various fields. For instance, in
manufacturing, General Motors head engineer Kevin Quinn uses
a customized Lego-based board to monitor and update the progress
of the manufacturing line, motivating engineers by making their
work visible [14]. In the medical field, physical models help
patients understand their conditions better, such as using physical
visualizations to describe hip pain or to analyze four-dimensional
blood flow data from cardiac MRI [2, 32]. In education, physical
visualizations enhance students’ creative and structural thinking,
allowing them to demonstrate lifestyle habits like sleep duration
and running routes through tangible models [1, 20, 21].

Physical visualizations can be static or dynamic. Static models,
such as bar charts, are straightforward and simple, while dynamic
models offer more interactive experiences. For example, the
EMERGE bar chart includes push-pull operations and RGB data
output, providing a more immersive experience through direct
haptic interaction [30, 31]. Dynamic microrobots, like Zooids,
represent data points that can move and be manipulated in real-time,
aiding in tasks like selecting job applicants or tourist destinations
[16]. Effective design of physical visualizations involves using
representative and symbolic materials (e.g., pencils for study time,
forks for meals) [21], adding color to enhance comprehension [9],
and ensuring readability and engagement while minimizing user
interaction [3, 33]. Medium-sized visualizations are particularly
effective for capturing data, while larger sizes leave a lasting visual
impact [17]. This comprehensive approach to design makes data
physicalization a powerful tool for conveying complex information



and engaging users meaningfully.

2.2 Comparative Study on Data Physicalization

In recent years, the performance of physicalization in practical
applications has emerged as a major topic of investigation in the
field of visualization research. Researchers have devoted their
efforts to comparing physicalization with various visualization
methods across multiple dimensions (Tab. 2 in Appendix), aiming
to comprehensively understand its performance and effectiveness in
practical applications.

Task Completion Time. Jansen et al. [13] compared a 3D physical
visualization with multiple on-screen models, including VR. Their
findings indicated that physical visualization significantly outper-
formed the on-screen models in terms of task completion time.
This was attributed to the direct hand interaction between par-
ticipants and the physical visualization, which facilitated quicker
task execution. However, the physical visualization used in this
experiment was limited in size, measuring only 8 cm, which posed
constraints in displaying multiple bar chart data. Also, Ren et al.
[23] compared physical visualizations with VR counterparts and
found that physical visualizations significantly outperformed VR in
terms of task completion time due to the tangible interactions they
afford.

Memorability. Stusak et al. [29] provided insights into the
comparative memorability of physical and digital visualizations
using bar charts. The study found that physicalization exhibited
higher memorability for long-term memory tasks, showing lower
forgetting effects. However, physicalization performed relatively
poorer in immediate memory tasks. Stusak suggested that the
size limitation of the physical visualization (28 cm) used in the
experiment could be a contributing factor. The handheld physical
visualization reduced the extent of haptic engagement and interac-
tion, potentially impacting immediate recall.

Interactivity and Usability. Kirshenbaum et al. [15] extended
the comparison to topographic maps, evaluating geographical in-
formation projections on 3D and 2D map models. They found
that 3D visualizations demonstrated greater advantages in terms of
interactivity due to the enhanced engagement afforded by the phys-
ical medium. However, in terms of usability, 2D representations
were clearer and more comprehensible for users. This highlights
the trade-off between the enhanced interactivity of 3D physical
visualizations and the clarity provided by 2D digital visualizations.

2.3 BResearch Gap and Our Study

While these studies provide valuable insights into the benefits and
limitations of physicalization, they primarily focus on relatively
small-scale models. Our research aims to fill this gap by comparing
larger-scale physicalizations (such as table-sized models) with
similar-sized digital displays. We investigate how these larger
physical (the scale of the furniture, which ensuring stability and
portability for evaluating the constructions in public settings [17].)
and digital visualizations impact information understanding and
memory retention.

Our study uses a 0.78-meter diameter physical model and a
similarly sized electronic screen to explore these differences. By
focusing on larger visualizations, we aim to provide more relevant
insights for applications in public and educational settings, where
understanding and memorability of information are crucial. This
approach helps extend the current understanding of data physical-
ization to more practical, real-world applications involving larger-
scale visualizations.

3 DATA AND VISUALIZATION DESIGN

This section provides an overview of the data selected for vi-
sualization and the design choices made for both physical and
digital representations. The aim of this study is to evaluate

Table 1: Year of Initial Building Utilization

Time Buildings

2006  Foundation Building (FB)

2010  Science Building (SA, SB, SC, SD)

2012  Engineering building (EE,EB) and Public Building
(PB)

2013  Central Building (CB)

2016 International Research Centre (IR), Humanities &
Social Science Building (HS), Design Building
(DB), International Academic Exchange & Collab-
oration Centre (IA), Emerging & Interdisciplinary
Science Building (ES)

2017 X Bar

2017  International Business School Suzhou (IBSS)

2018  Sport Center (SC), School of Film and TV Arts (AS)

how different visualization mediums affect response time user
experience, information comprension and memory retention. We
used publicly available data on our university buildings’ completion
dates due to their intrinsic interest and relevance to our participants.
By utilizing both physical and digital visualization methods, we
extend previous research focused on simpler forms like bar charts
[13, 29] and maps [15], enabling a deeper exploration of more
complex data visualizations.

3.1 Data Collection

We selected the completion dates of our university’s main campus
buildings as the visualized data. This data choice was guided by
several key considerations:

* Relevance to Participants: Our primary user group consists of
students who are readily accessible and have a vested interest
in the university’s history. By selecting data that they find
interesting yet may not easily obtain themselves, we aimed to
increase their engagement and motivation.

* Educational Value: Understanding the chronological and spa-
tial development of campus buildings helps students and long-
term faculty better connect with the university’s history and
evolution. Even experienced campus community members often
lack detailed knowledge of these aspects, making this data both
informative and engaging. By visualizing the development of
the university’s infrastructure, we can provide a meaningful
educational experience that strengthens participants’ connection
to the institution.

* Complexity of Data: Unlike previous studies that focused on
either purely spatial information or simple numerical data repre-
sented in bar charts [13], our data combines temporal and spatial
elements, making it more complex. This complexity provides
a richer, more detailed understanding of the effectiveness of
different visualization media.

We collected the completion years for these buildings (Tab. 1)
through three official sources: the school history museum, the
exhibition map in the North-South corridor, and the official WeChat
mini-program.

3.2 Visualization Design

The visualization media served as the sole independent variable in
our experiment, focusing on both three-dimensional (3D) physical
and digital visualizations to assess their impact on response time,
user experience, data comprehension, and memorability.
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3.2.1 Physicalization

We adopted the “tree ring” format to visualize the completion years
of the 14 university buildings (as seen in Fig. 2-B2). Each ring rep-
resents a specific year (from 2006 to 2018), and the positions of the
buildings on the rings maintain their relative spatial relationships.
For instance, buildings on the same side of a ring belong to the same
campus area (either the North or South Campus). To avoid issues
with displaying multiple buildings at the same height, we also
encoded the historical duration of each building using the length
of the cylindrical supports beneath them. Thus, from Fig. 3-A,
we can see the overall visualization encodes the building’s history
through the distance from the model’s center and the cylinders’
height. The positioning on each ring approximately preserves the
original relative locations of the buildings.

Our design leverages a familiar time representation format (tree
rings) and effectively uses two encoding channels to display the
buildings’ completion sequence and relative positions. The primary
design goal is to enhance user engagement and interest, enabling
a quick and intuitive understanding of the campus’s architectural
history while meeting the aesthetic requirements common in artistic
installations.

Regarding size, we chose a large scale (diameter of 0.78 meters,
height of 0.39 meters) commonly seen in museum and exhibition
settings. This table-sized format balances the advantages of both
large and small-scale visualizations, allowing users to view the
entire visualization and inspect details easily [17]. The physical
model consists of a circular base with cylindrical supports and
miniature building models on top. The buildings’ colors closely
matched their real-life counterparts on campus, enhancing the
model’s authenticity and visual appeal [9].

3.2.2 Digitalization

For digital visualization, we used Rhino software to ensure consis-
tency with the physical one’s colors and design [9]. The Rhino-
rendered digital model provides a 3D multi-perspective view (as
shown in Fig. 1-A), maintaining the same spatial relationships and
color schemes as the physical model.

To ensure an equitable comparison, we displayed the digital
visualization on a touch-enabled electronic screen of similar size
(40-inch; 0.88m x 0.49m) to the physical model. We also keep
the display view the same as the physical visualization size. This
setup included two common interaction methods in museums
and art exhibitions: direct touch interaction on the screen and
interaction via a smaller connected touchscreen device. For this
study, we connected a 10.9-inch tablet to allow users to experience
different interaction modes and choose their preferred method.
Participants were allowed to observe from any angle and height for
physicalization, ensuring consistent viewing experiences.

4 EXPERIMENT
4.1 Participant and Experimental Design

In our study, we had 32 participants, with each participant assigned
to one of the two conditions in a between-subjects design. Using
G-power [27] for an independent two-sample t-test with an effect
size of 0.8, an alpha level of 0.05, and a power of 0.85, the required
sample size was approximately 29 participants. Our sample size of
32 participants (16 per condition) is adequate and slightly exceeds
the required number, ensuring sufficient power to detect significant
effects. They were reached through multiple social media at our
university, ranging in age from 19 to 26 years, with an average age
of 22. The group included 1 doctoral student, 1 graduate student,
and 30 undergraduate students. These participants are mainly
from five different backgrounds, including computer science (18),
business (10), engineering (2), mathematics (1), and environment
(D).

The participants were divided into two equal groups, each

consisting of 8 males and 8 females. Both groups of participants
were conducted within the same laboratory setting, where the
individuals had unrestricted access to engage with models in the
designated area, allowing for free interaction during the experiment.
Group A: This group observed the digital visualization displayed
on a 40-inch LCD touch screen (Fig. 1-B1). To control for
the variable of interest—the type of visualization—participants
were only allowed to rotate the model but not zoom in or out
directly or using an iPad. This ensured that any differences in
memorability could be attributed to the visualization method rather
than variations in model size.
Group B: Participants in this group were tasked with observing
the physical visualization (Fig. 1-B2). They were given complete
freedom to interact with the model, including touching it and
moving around to view it from different angles. This unrestricted
interaction was intended to provide a comprehensive understanding
of the physical model’s impact on memorability.

4.2 Metrics

The specific metrics of our experiment included response time, user
experience, immediate feedback, and long-term memory retention
measured seven days later.

Response Time. To effectively evaluate the impact of two different
media on participants’ memorability regarding questions of varying
difficulty levels, the duration spent contemplating each participant’s
responses to different levels of questions was documented. A timer
was used to track how long participants spent on each question.
Quantitative Data Comprehension and Recall. The quantitative
assessment of data comprehension and recall was divided into three
task-based categories inspired by map-related tasks [24, 28], as our
data combines temporal and spatial elements. These tasks were
designed to measure different levels of cognitive engagement (see
details in Tab. 3):

(1) Identification (Easy): Participants were asked to identify and
recognize individual buildings based on their location and com-
pletion year.

(2) Comparison (Moderate): Participants were required to com-
pare two buildings, determining which one was completed first
or relative position.

(3) Ranking (Difficult): Participants were tasked with ranking
three buildings according to their completion dates or ranking
their relative position from north to south or from east to west.

The assessment questionnaires for both the year and geograph-
ical location data included 12 questions each, with four questions
per difficulty level. This structure allowed us to evaluate accuracy
and response time across different levels of complexity.
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Figure 4: Overview of the entire experimental procedure

Qualitative Pattern Comprehension and Recall. In addition to
quantitative tasks, participants were asked to provide qualitative
feedback on the patterns or trends they noticed in the visualizations.
We recorded these observations immediately after the visualization
session and revisited them during the long-term memory test seven
days later. Participants were also required to describe or sketch
their memory of the visualization, helping to capture the depth and
persistence of their recall.

User Experience. The user experience was assessed using the
User Experience Questionnaire (UEQ) [22, 26], which is normally
used to evaluate interactive products based on various criteria
such as attractiveness, perspicuity (shown in Tab. 4), efficiency,
dependability, stimulation, and novelty. Participants completed this
questionnaire immediately after interacting with the visualization,
capturing their immediate reactions and experiences.

4.3 Experiment Process

To comprehensively understand how visualization methods affect
immediate comprehension and long-term memory retention, we
divided the evaluation into three key stages: pre-test, immediate,
and long-term (a week later). This design allowed us to assess
participants’ instant memory of the data and observe memory decay
over time, aligning closely with numerous previous studies on the
memorability of visualizations [4, 25, 28, 29]. A 7-day interval for
long-term testing is considered appropriate and has been validated
in prior research as an effective timeframe for assessing long-term
memory retention [10, 34]. Our study was approved by the school’s
ethical board before its initiation.

(1) Introduction and Consent:

¢ Project Introduction: The experiment began with an in-
troduction of the project, explaining the study’s objectives,
methodology, and significance.

* Informed Consent: Participants were provided with an
information sheet and consent form to ensure they understood
the study and their rights.

e Pre-Test Questionnaire: Participants completed a back-
ground information and knowledge questionnaire, similar to
[4, 10]. This included questions about their background
information and prior knowledge of the subject matter to
ensure a baseline understanding before the experiment.

(2) Observation and Interaction: Participants were assigned to
either the digital or physical visualization group, with 7 minutes
to explore their assigned visualization. This duration was de-
termined through multiple rounds of testing among the authors,
ensuring it was an optimal time for most participants to engage
with and remember the information effectively.

* Digital Group: Interacted with the digital model on a large
touch screen or small iPad, rotating it to view different angles.

* Physical Group: Touched and viewed the physical model
from various perspectives, moving around it freely.

(3) Immediate Testing: Participants completed a questionnaire
to assess their understanding and memory after a 7-minute
interaction.

* Questionnaire Structure: The survey was divided into six
sub-sections, covering year and location data across three
difficulty levels.

 Insight and Pattern Recognition: Participants wrote down
approximately three insights or patterns they observed.

¢ User Experience Questionnaire: Participants also com-
pleted a User Experience Questionnaire (UEQ).

(4) Long-term Memory Testing: One week later, participants took
a similar test to assess long-term memory retention.

* Questionnaire Consistency: The questionnaire content was
identical, with the question order shuffled.

* Visualization Recall: Participants were asked to draw or
write down their recollection of the visualization.

« Offline/Online Options: Participants could complete the test
offline or online.

4.4 Analysis Method

To examine significant differences between the data from different
models, we employed the t-test method. Additionally, to investigate
memory retention over different time points within the same group,
we conducted repeated-measure ANOVA. This approach allowed
us to assess whether memory retention significantly impacted the
data across the three testing sessions.

5 RESULTS

Our comparative study examined the effectiveness of digital and
physical visualizations across three key metrics: response time,
user experience, and immediate comprehension and long-term
memory retention of information. Below, we summarize and
analyze our findings in these areas.

5.1 Response Time

We measured and recorded participants’ time to complete quantita-
tive information comprehension questions. A t-test revealed no sta-
tistically significant differences in response times between the two
visualizations, with p-values of 0.605. Participants who observed
the digital visualization (Group A) had an average response time of
149.91 seconds (SD = 73.58), and participants who observed the
physical visualization (Group B) had an average response time of
143.06 seconds (SD = 70.41).



5.2 User Experience

We conducted an analysis of the user experience with a confidence
interval set at 95%. The findings (see Fig. 5) indicated a significant
difference between the two types overall (p = 0.011), particularly in
terms of pragmatic quality (p = 0.030). However, no significance
was observed in hedonic quality. These results suggest that while
both visualizations were similarly enjoyable, participants found the
physical visualization more practically useful.

Digital
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Figure 5: Results of the mean score of the two visualizations on

user experience. (* indicates a significant difference)

5.3 Information Comprehension

Quantitative Results: Before analyzing accuracy, participants’
questionnaire responses were encoded: correct answers were coded
as 1, while incorrect answers and “I don’t know” responses were
coded as a 0. 95% confidence interval was applied.

We assessed participants’ comprehension of information three
times: before using the visualizations, immediately after use, and
seven days later. The same set of questions was used for each
test, with the order randomized. The repeated-measure ANOVA
revealed significant differences in accuracy rates across the three
different times for each medium (p = 0.001 for physicalization,
p = 0.007 for digitalization). For the digital visualization group,
the average pre-test accuracy was 31.25% (SD = 0.148), which
increased to 78.13% (SD = 0.163) immediately after use and
retained a rate of 58.85% (SD = 0.141) after seven days. For
the physical visualization group, the average pre-test accuracy
was 35.16% (SD = 0.149), which improved to 84.90% (SD =
0.115) immediately after use, and retained a rate of 73.96%
(8D = 0.157) after seven days. The detailed results can be seen
in Tab. 5. We conducted t-tests to compare the accuracy rates
between the two visualizations at each time point. The pre-test
accuracy differences were not statistically significant (p = 0.089),
indicating that both groups started with similar levels of knowledge.
However, significant differences were found in the accuracy rates
immediately after using the visualizations (p = 0.042) and seven
days later (p = 0.028), with the physical visualization group
consistently outperforming the digital group.

Further analysis was conducted to examine the accuracy for
different types of data (year and location) and across different
difficulty levels (Fig. 6):

* Year: The average pre-test accuracy was 27.08% (SD = 0.227)
for the digital visualization and 20.83% (SD = 0.149) for the
physical visualization, showing no significant difference initially.
After using the visualizations, the immediate memory accuracy
increased to 84.38% (SD = 0.185) for the digital group and
88.54% (SD = 0.085) for the physical group, with a significant
difference between the two (p = 0.023). Seven days later, the
retention accuracy was 63.02% (SD = 0.204) for the digital
group and 76.04% (SD = 0.187) for the physical group, with a
significant difference (p = 0.025).

e Location: The average pre-test accuracy was 35.42% (SD =
0.171) for the digital visualization and 49.48% (SD = 0.252)
for the physical visualization. Immediate memory accuracy
improved to 71.88% (SD = 0.211) for the digital group and
81.25% (SD = 0.181) for the physical group. Seven days later,
the retention accuracy was 54.69% (SD = 0.209) for the digital
group and 71.88% (SD = 0.172) for the physical group, with a
significant difference (p = 0.041).

« Difficulty Levels: Analysis of specific recall questions at dif-
ferent levels showed significant differences in the moderate
questions (p = 0.026). Seven days later, the retention accuracy
showed significant differences across easy, moderate and difficult
questions (p = 0.043, p = 0.032 and p = 0.038, respectively).

Qualitative Results: Participants were asked to summarize the
patterns they observed from the visualizations immediately after
usage (see details in Tab. 6 and Tab. 7 in Appendix). Among the
digital visualization group, only 5 participants mentioned relevant
patterns, while 8 participants from the physical visualization group
identified these patterns. The main patterns observed included:
(1) a closer proximity between buildings correlates with a shorter
duration until they are put into use, (2) the North campus was
initially operationalized, followed by the subsequent utilization of
the South campus, and (3) the buildings in the South campus were
occupied at a faster pace compared to the North campus.

Seven days later, participants were again asked to recall the
patterns. Consistently, participants who used the physical vi-
sualization could recall more patterns accurately. Additionally,
they were asked to accurately sketch the visualization they had
used (see Fig. 7). In the digital group, only 8 participants
could provide a rough depiction of the tree-ring visualization and
spatial distribution, whereas 14 participants in the physical group
successfully completed the drawing task satisfactorily.

5.4 Summary

Our results indicate that while there are no significant differences
in response times between digital and physical visualizations,
physical visualizations offer a better user experience and signifi-
cantly improve immediate comprehension and long-term memory
retention of information. The main differences between the two
visualizations are evident in more difficult tasks, where physical
visualizations show a clear advantage. Additionally, in terms of
visual recall, physical visualizations are more effective at helping
users remember the visualization itself. Furthermore, in qualita-
tive feedback, users of physical visualizations are more likely to
uncover underlying patterns within the whole dataset.

6 DISCUSSION

In this section, combining the previous literature findings related to
materialization, we analyze, discuss and reflect the data results.

6.1 Discussion on Results

¢ Response Time. Our study found no significant difference in
response time between the two visualization media. This finding
contrasts with Jansen’s study, which reported faster task com-
pletion times for small-sized (8cm x 8cm) physical visualizations
compared to on-screen models [13]. When the medium size is
large, there is no significant difference in effectiveness between
the screen and physical forms.

e User Experience. The user experience analysis showed that
physicalization outperformed digital visualization. This aligns
with findings from previous studies, such as Stusak et al. [29],
which found that physical visualization demonstrated superiority
over the tablet to provide a more enjoyable reading experience
for participants when presenting bar chart-related data.
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¢ Immediate Comprehension. Our analysis revealed a significant
effect of display media on immediate comprehension, with phys-
ical visualizations demonstrating higher accuracy compared to
digital ones. We attribute this outcome to two main factors. First,
physical visualizations enable participants to directly interact
with the data, engaging in a more immersive exploration through
tactile means and examining the data from multiple perspectives.
This direct interaction likely enhances the capture and memo-
rization of knowledge more effectively [5, 11]. Additionally,
the unique form and appearance of our 3D visualizations are
more easily perceived in physical form, facilitating immediate
comprehension. The tangible nature of physical models allows
participants to relate to and recall the information more easily,
as suggested by Dragicevic [6]. These factors combined suggest
that physical visualizations offer a superior means for users to
quickly and effectively comprehend information compared to
screen-based displays.

* Memory Retention. In the assessment of data retention one
week later, the physicalization exhibited superior accuracy com-
pared to digital ones. Nearly all participants who observed the
physicalization could accurately depict the approximate design
outline (tree rings), supporting Lépez’s conclusion that physical
visualizations leave a more profound impression on the audience
[17]. This finding also corroborates Stusak’s research [29] on
memory retention for physical and on-screen bar chart data,
which indicated that physicalization tends to mitigate memory
loss over time. The tactile and visual engagement with physical
models can reinforce memory encoding, leading to better long-
term retention of complex data. Also, this enhanced retention
can be attributed to physical models’ clear spatial information
and interconnectivity, which help individuals establish stronger
spatial relationships and associations in their memory [11].

6.2 Reflections

Here are some key reflections and insights drawn from our work:

¢ Comprehensive Data Collection and Analysis. One notable
aspect of our experiment was the extensive data collection,

encompassing quantitative and qualitative measures. We eval-
uated users’ comprehension through specific data comparisons,
sorting tasks, identification, and the ability to discern patterns
and underlying insights. This approach contrasts with many prior
comparative studies that often focus solely on basic quantitative
metrics. Our study was influenced by research [7] suggesting
that the primary purpose of visualization is not merely to recall
specific values but to understand and interpret broader data
patterns and trends. As noted, effective visualization facilitates
insight generation, allowing users to grasp relationships and
patterns within the data. Therefore, including pattern recognition
tasks in the evaluation was a critical design choice to capture a
more holistic understanding of visualization effectiveness.

However, it is important to acknowledge that our pattern recog-
nition analysis remains at an early stage, primarily counting the
frequency of identified patterns. Additionally, because many par-
ticipants lacked formal training in visualization, their reflections
might have focused more on the visual encoding rules rather than
the underlying data patterns (see Tab. 6 and Tab. 7 in Appendix).
Future studies should develop more sophisticated methods for
analyzing and summarizing these insights and explore ways
to guide users better or employ alternative methods to elicit
meaningful patterns and insights from visualizations.

Interaction Differences and Their Impact. Another significant
reflection involves the interaction differences between the two
visualization media. Physicalization allows for a more immersive
and active exploration, with users physically moving around and
viewing the model from various angles. This tactile interaction
often results in a more engaging and memorable experience.
Inversely, digital visualizations rely on screen-based interactions,
such as rotating the model on a touch screen. Although we
attempted to mitigate interaction complexity by providing an iPad
for more manageable navigation, users still preferred the direct,
hands-on interaction offered by physicalization.

This preference highlights an important consideration for se-
lecting visualization media: the complexity and nature of user
interaction. Physicalizations offer more intuitive and satisfying
interactions, which can significantly enhance user experience.
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Figure 7: The sketch drawn by participants: A Digital Visualization (Group A); B Physical Visualization (Group B).

However, when interaction complexity is minimized, as in our
study, the differences in user experience between the two media
may be reduced. Despite our efforts to simplify digital interac-
tions, physicalizations still provided a superior user experience.

6.3 Limitation and Future Work

This study has provided insightful contributions to understanding
the effects of data physicalization. However, several limitations
must be recognized, opening opportunities for further exploration.

¢ Demographic Specificity. Our study predominantly involved
participants with a relatively young average age. This de-
mographic focus limits the generalizability of our findings to
young individuals who may have particular aptitudes or prefer-
ences for engaging with physicalized data. To develop a more
comprehensive understanding of how different age groups and
demographic backgrounds respond to data physicalization, future
studies should encompass a broader range of participants. This
expansion would help ascertain whether the observed benefits of
physicalization hold across diverse populations and how different
demographic characteristics influence the effectiveness of visual-
ization techniques.

¢ Scale of Physical Visualization. Although our study tested
larger-sized physical entities and digital forms, we also observed
larger-scale data physicalizations in practice, akin to the size of
an entire wall or half a floor. The comparison between these
grand-scale physicalizations and similar-sized digital displays
remains unexplored. Investigating how the size and scale of
physicalization affect user interaction and memory could provide
crucial information for designing data visualizations in large
public or educational spaces.

¢ Data Type and Representation. This research predominantly
focused on static data types, specifically those related to years
and geographic locations, utilizing tangible geometric models or
solid materials for representation. According to visualization
theory [12], the choice of medium for displaying data is often
dictated by the target audience and the specific tasks at hand.
In public settings, where the general audience interacts with
visualizations, the complexity of these visualizations is typically
kept to a minimum. Building on previous research that primarily
explored simple visual forms like bar charts and conventional
maps, this study ventured into a less familiar territory by experi-
menting with innovative spatiotemporal data visualizations.

This study initiates an important dialogue about the adaptability
of data visualization strategies to accommodate more complex or
varied data types. Future research could leverage this foundation
to comprehensively explore the potential complexities in data

visualization, aiming to enhance understanding and interaction
across a broader spectrum of public and specialized audiences.
Such investigations would not only enrich the field of data
visualization but also refine the practical applications of these
technologies in diverse real-world scenarios.

* Diverse Physicalization Techniques. Our experiment focused
on most traditional methods of physicalization, yet innovative
approaches, such as dynamic wheeled micro-robots [16], are
emerging. Future studies could examine the effectiveness of
these novel physicalization techniques compared to counterparts
on the digital screen. Such research would expand the toolkit
for data visualization, potentially leading to more engaging and
effective ways to represent and interact with data.

¢ Longitudinal Impact. This study did not address the long-
term effects (more than seven days) of data physicalization on
memory retention. Understanding how physical and digital data
representations influence memory over extended periods could
provide deeper insights into their efficacy as educational and
communicative tools.

Addressing these limitations and incorporating these suggestions
into future work will refine the understanding of data physicaliza-
tion’s benefits and broaden the scope of its applicability in real-
world scenarios.

7 CONCLUSION

In this study, we compared two visualization media forms —
screen-based digitization and physicalization on four dimensions:
response time, user experience, immediate comprehension and
memory retention. The experimental findings revealed a sig-
nificantly positive impact of data physicalization on immediate
comprehension, memory persistence and usability. Furthermore,
distinct from prior studies which primarily focused on smaller-scale
visualizations, our research emphasized the visualization on larger
scales. Unlike the common bar charts or map-based data physical-
izations, our study implemented more intricate visualization appa-
ratuses. These findings have important implications for the design
and application of data visualization, offering valuable guidance
for the selection of table-sized display mediums in settings such
as museums, art galleries, or educational tools.
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Appendix

This section provides a summary of related literature, detailed questionnaires and qualitative data from our experiment.

A COMPARATIVE STUDY ON PHYSICALIZATION

Table 2: Previous literature on physicalization comparison

Author Comparison Size of Testing Result
Content Physical Model Metric
Jansen et al (2013) Physicalization versus 8em x Sem (a) Error rate; Physicalization performs
[13] Stereo ‘ée];sus Mono (b) Time on task. best at time on task.
versus
Stusak et al (2015) Physical Visualizations 28em x 17em (a) Correctness rate; Less memory loss in
[29] xe.rsulsv Digltal (b) Memorability score. ~ physicalization.
isualizations
Ren, He &

Hornecker, Eva
(2021) [23]

Chettaoui et al
(2023) [4]

Physicalization versus
Virtualization

Tangible user interface
(TUI) versus Classic
method with
non-augmented objects

60cm x 40cm x 50cm

52c¢m x 70cm

(a) Response time;
(b) Correctness rate.
(a) System Usability

Scale (SUS) score;
(b) Completion Time.

(a)Lower response times in
physicalization;

(b) Differences of correct-
ness rates are marginal.

TUI performs better at
short-term retention

B DETAILED EXPERIMENTAL QUESTIONNAIRES



Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Table 3: Detailed Questions and Answers of the Public Data

Which building was/were the last to be put into use in XJTLU?

O IBSS @ Sport Centre 0O DB 0O I don’t know

Which building was/were the last to be put into use in the North campus of XJTLU?
O SA 7 CB O EB O I don’t know

Which building was/were the first to be put into use in XJTLU?

O PB 7 FB o SD 0O I don’t know

Which building was/were the first to be put into use in the South campus of XJTLU?
0O X-bar 7 ES O AS O I don’t know

Which was used earlier, IA or AS?

O AS 1A 0O I don’t know

PB was put into use later than IBSS.

O Yes 7 No 0O I don’t know

The year difference between SA and FB is smaller than that between CB and PB.

O Yes 7 No 0O I don’t know

HS and IR were put into use at the same year.

7 Yes ONo 0O I don’t know

Both AS and IA were put into use in 2016.

O Yes 7 No O I don’t know

List the following buildings in descending order of when they were put into use. (The earliest-used building is ranked the first)
OES O IBSS O Sport Centre

ES > IBSS > SportCentre

Was PB put into use in 2008?

O Yes 7 No 0 I'don’t know

List the following buildings in descending order of when they were put into use. (The earliest-used building is ranked the first)
OEE a AS olA

EE > 1A > AS

ES is located in the North Campus.

O Yes 7 No O I don’t know

Which is the easternmost building in the North Campus?

OPB O SC 7 EB 0O I don’t know
DB is located in the South Campus.

7 Yes ONo O I don’t know

Which is the easternmost building in the South Campus?

i Sport Centre O HS 0O X-bar 0O I don’t know
SD is west of PB.

7 Yes ONo 0O I don’t know

In the east-west direction, which is closer to CB, FB or SC?

0 SC I FB O I don’t know

ES is east of DB.

O Yes 7 No 0O I don’t know

In the east-west direction, which is closer to IBSS, X-bar or Sport Centre?
O Sport Centre 7 X-bar 0O I don’t know

Arrange the following buildings in order from north to south.

OPB o IBSS OlIR

PB > IR > IBSS

Arrange the following buildings in order from west to east.

O AS O Sport Centre 0O SB

AS > SB > SportCentre
Arrange the following buildings in order from north to south.

O HS o DB o SC

SC>HS > DB

Arrange the following buildings in order from west to east.
0O X-bar O ES olA

ES>X —bar>IA



Table 4: User Experience about the Memorability of Data Physicalization

For the assessment of the product, please fill out the following questionnaire. The questionnaire consists of pairs of contrasting attributes that
may apply to the product. The circles between the attributes represent gradations between the opposites. You can express your agreement
with the attributes by ticking the circle that most closely reflects your impression.

Example:
attractive | O O @ O O O O | unattractive

This response would mean that you rate the application as more attractive than unattractive.
Please decide spontaneously. Don’t think too long about your decision to make sure that you convey your original impression.

Sometimes you may not be completely sure about your agreement with a particular attribute or you may find that the attribute does
not apply completely to the particular product. Nevertheless, please tick a circle in every line.

It is your personal opinion that counts. Please remember: there is no wrong or right answer!

Please assess the model now by ticking one circle per line

1 2 3 4 5 6 7
obstructive O O O O O O O )| supportive
complicated O O O O O 0O Od,|easy
inefficient O o O O o o O] efficient
confusing O o O 0o o o O] cler
boring O O O O O O O] exciting
Notinteresting | O O O O O O 0O | interesting
conventional O O O O O O O] inventive
usual O O O O O 0O O | Leadingedge

C AQUANTITATIVE RESULTS

Table 5: Overview of the Average Accuracy of Two Visualizations: average accuracy rates across three different stages — pre-test, immediate
testing, and long-term testing, as well as three levels of difficulty (easy, moderate, and difficult) in Year and Location information.

Immediate Memory Memory
Pre-Test Comprehension Retention
Overall 35.16% 84.90% 73.96%
Physicalization 46.88%|32.03%|26.56%  92.19%|83.59%|78.13%  88.28%|78.13%|55.47%
’ JYear o 2083% o 8854% T604%
Location 49.48% 81.25% 71.88%
Overall 31.25% 78.13% 58.85%
Digitalization  -—ves.r..rve.nn. 3 207%|25.00%|31.25%  84.38%|74.22%|75.78% _ 66.93%|66.67%|40.36%
£ Year 27.08% 84.38% 63.02%
“Location 3s542% 71.88% 54.69%

D QUALATITIVE RESULT

Overall, we can see that users’ understanding of patterns and insights may not align with those trained in data visualization, who typically
explore from a data perspective. General users may instead derive patterns based on the visualization encoding rules. Therefore, we will
provide further guidance on pattern and insight identification in future experiments to obtain more reasonable and accurate insight discoveries.



Table 6: Patterns described by participants using digital visualization

ID

Immediate comprehension

Memory retention

1. Arrange the buildings from inside to outside according to the
time they are put into use.

2. Buildings put into use in the same year are placed in the same
circle.

With FB as the center, the North campus is distributed in the
north of FB, and the south campus is distributed in the south of
FB.

The circle represents the year equipotential line (from inside out
indicates the service time from long to short).

The buildings on the same circle are placed according to the
actual geographical location.

1. The innermost part of the disc represents the earliest year
when it is put into use, and the years are evenly distributed.

2. The denser the disc is, the closer the time it is put into use.

1. The North campus to be put into use first and the South
campus to be put into use later.

2. Put into use the building with higher columns first, and then
put into the shorter building

1. The closer to the centre, the earlier the building is put into
use.

2. Buildings put into the same year are located on the same
circle.

3. The distance of gaps between circles are correlated to the

The building is from the inner circle to the outer circle, from
high to low, representing the year of the building being put into
use from early to late.

The year marked on the bottom disk tells you the year each
building is put into use.

1. The buildings of the South Campus are distributed
symmetrically.

2. The use time of the South Campus is shorter when the overall
building is put into use, while the North Campus is longer when
the overall building is put into use.

The closer the buildings are, the more similar the years they are
used.

1. All the buildings are allocated according to both time lines
and their actual locations.

2. Additionally, the general trend shows that all the buildings in
the north campus appear earlier than those in south.

The closer it is to the center of the circle, the earlier the building
will be put into use.

From the inside out in chronological order.

With FB as the center, the North campus is on the north side
and the south campus is on the south side.

The models are arranged in layers of annual wheels according
to the construction year of the school.

1. The closer the building is to the center, the longer it has been
in use.

2. The time gap between buildings being put into use can be
judged by the distance between corresponding circles.

The location of the building in the timeline is the same as in real
life.

1. Each building of the school is in a time circle with the earliest
time in the inner circle and the latest time in the outer circle.

2. The location of the building in the timeline is the same as in
real life.

1. The building is built from the inside out, and the year when
the building is put into use increases.

2. Fewer buildings are put into use in the early stage and more
intensive in the later stage.

3. The buildings on the North campus are put into use first,
followed by those on the South campus.

1. The oldest building located at the centre and the highest. The
newest building located away from the centre.

2. Buildings put into use in the same year are on the same
annual rings.

1. The year when the building was put into use is very clear, and
the buildings on the same horizontal line can be remembered by
association.

2. The height of the buildings in different years is different, so
it is easy to remember the order of the years.

This model presents the various buildings in the north and south
campuses on a concentric circle with time as the axis, based on
their geographical location and relative distance.

1. This is a circular model that integrates the location of the
building and the construction time.

2. The farther away from the center point of the circular disk,
the larger the radius, and the shorter the construction time.

1. The closer the building is, the closer the year it was put into
use.
2. The layout of the building corresponds to the actual situation.

1. The model adopts the form of time-space distribution, and
displays the building model from the inside out according to the
time of building construction in the horizontal direction.

2. Since the buildings in different time loops are arranged
according to the actual orientation, I can intuitively and quickly
understand what the model wants to describe.

1. The farther from the center of the circle, the newer the year
the building was put into use.
2. The color of the building model is consistent with the reality.




Table 7: Patterns described by participants using physical visualization

Immediate comprehension

Memory retention

The buildings are distributed according to time, and the inner
circle buildings are put into use earliest.

1. The buildings of the South Campus are put into use from
2016 to 2018.

2. The buildings of the North Campus are all put into use before
2013.

3. The North campus buildings are put into use in a relatively
scattered time, while the South campus buildings are more
concentrated.

4. The buildings placed in the outer ring are newer.

Buildings are prioritized according to time, and buildings of the
same year refer to the actual geographical location.

Buildings in the same circle are distributed according to their
actual geographical location.

1. The buildings of the North Campus are generally put into use
earlier than those of the South Campus.

2. The building of the South Campus has been put into use for
a shorter time than that of the North Campus.

1. The buildings of the North Campus are generally put into use
earlier.

2. The construction of the South Campus is generally late and
time intensive.

The different heights of the model buildings indicate the time of
being put into use.

The number of buildings put into use in the early stage is small,
and the number of buildings put into use in the later stage is

The buildings of North campus are put into use earlier, while
those of South Campus are put into use later.

The closer the buildings are to the time when they are put into
use, the closer the models are.

1. More buildings have been put into use in the South Campus.
2. The buildings of the North Campus are put into use relatively

1. The buildings of South Campus are put into use in 2016-
2018.

2. The buildings on the south campus are relatively
concentrated, while the buildings on the North campus are
relatively evacuated.

1. The location of the South campus buildings are near the
periphery of the ring (the year they are put into use is relatively
new).

2. The North campus buildings are near the circle center.

1. The year in which the building is put into use gradually
decreases from the inside out.
2. The building is centered on FB, which is the first put into use.

The building gradually transforms from inside to outside.

1. The model distributed every building in XJTLU in a circle,
with the latest outside and the oldest inside.

2. The buildings located from west to the east is allocated from
the left to the right in the model.

Use established years and locations to distinguish different
buildings, and the established years are shown in concentric
circles.

1. The buildings near the center of the circle were put into use
the earliest.

2. The distribution is roughly based on the actual geographical
location.

The buildings of the North Campus were put into use earlier
than those of the South Campus.

1. The position of the model is designed in concentric circles,
which makes it easy to remember which buildings are in the
same year.

2. Different models have different color heights and
appearance, giving people a deeper impression.

The closer the building is placed to the outer ring, the newer the
year it is put into use.

This 3D model contains the content of the year and geography
information and so on.

1. Building investment time gradually increases from inside to
outside.

2. The closer the time the building is put into use, the more
compact it is.

1. The pattern is combined in time and space.

2. But it is only easier for me to remember the relative location
instead of the specific location.

1. It’s a circular model.

2. The closer to the center, the older the building.
3. The farther away from the center, the closer to the present
time it was built.

1. Circular distribution.

2. The closer to the center of the circle, the older the building
is.
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