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Abstract

Animating objects’ movements is widely used to facilitate tracking
changes and observing both the global trend and local hotspots
where objects converge or diverge. Existing methods, however,
often obscure critical local hotspots by only considering the start
and end positions of objects’ trajectories. To address this gap, we
propose RouteFlow, a trajectory-aware animated transition method
that effectively balances the global trend and local hotspots while
minimizing occlusion. RouteFlow is inspired by a real-world bus
route analogy: objects are regarded as passengers traveling together,
with local hotspots representing bus stops where these passengers
get on and off. Based on this analogy, animation paths are generated
like bus routes, with the object layout generated similarly to seat
allocation according to their destinations. Compared with state-of-
the-art methods, RouteFlow better facilitates identifying the global
trend and locating local hotspots while performing comparably in
tracking objects’ movements.

CCS Concepts

« Human-centered computing — Visualization techniques;
Information visualization.
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1 Introduction

Animating objects’ movements is widely used to facilitate tracking
changes and observing both the global trend and local hotspots
where objects converge or diverge [14, 43]. For example, by animat-
ing bird migration data [46], users can observe birds’ movements,
understand the migration trend, and identify highly active locations
where birds converge to cross the straits or diverge to bypass moun-
tains (Fig. 1(a)). Here, the global trend provides valuable insights
into broader movement patterns, while the local hotspots serve as
strategic locations for observation and analysis [30, 32].

Many research efforts have been directed toward developing
techniques for animated transitions, aimed at helping users track
objects’ movements. These efforts mainly focus on adjusting various
animation parameters from temporal (e.g., speed [15], staging [26],
staggering [13]) and spatial (e.g., animation paths [17, 49]) per-
spectives. Recent studies have further advanced these techniques.
Zheng et al. [55] divided transitions into groups and animated
them sequentially, thereby breaking down complex animations
into simpler ones (Fig. 1(b)). Wang et al. [49] used vector fields
to coordinate group movements and reduce occlusion by spatially
separating animation paths (Fig. 1(c)). However, all these methods
only consider the start and end positions in the objects’ trajectories.
Although effective in conveying global trends, they often obscure
critical local hotspots along the movement trajectories.

Recognizing this gap, we aim to design an animated transition
method that considers the movement trajectories of objects. By
using these trajectories, the animations can effectively reveal both
the global trend and local hotspots. Thus, our method provides a
clearer understanding of local areas of high activity in their global
context. However, designing such animations is non-trivial. First,
balancing the global trend and local hotspots in animation remains
challenging. Overemphasizing local hotspots may result in exces-
sive branching areas, impeding the identification of the global trend.
Conversely, stressing the global trend heavily may obscure im-
portant local hotspots. Second, reducing occlusion in animated
transitions is imperative yet difficult, especially when multiple
objects move simultaneously. They may occlude each other, thus
significantly increasing the difficulty of tracking their movements.
Occlusion becomes even more severe in local hotspots, where many
objects converge or diverge.
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Fig. 1. A comparison of three animated transition methods on a bird migration example.

To address these challenges, our animation design utilizes a real-
world bus route analogy: groups of passengers board the same bus
at different stops, travel together along the shared routes, and disem-
bark at designated stops. We regard objects as passengers traveling
together, with local hotspots representing various bus stops. Based
on this, we animate objects following the shared paths, converging
or diverging at local hotspots. As such, users can observe the global
trend and identify local hotspots, similar to observing overall bus
routes and identifying frequently visited stops. In this analogy, we
regard 1) achieving a balance between the global trend and local
hotspots as planning bus routes for efficiency and effectiveness.
These bus routes should not only be of minimal length but also
meet passengers’ travel demands. Besides, we consider 2) reducing
occlusion by allocating passengers to respective seats in the process.
Consequently, we formulate the problem of designing animated
transitions for trajectory data as a sequential optimization of two
sub-problems: bus routing and seat allocation.

Based on this formulation, we propose RouteFlow, a trajectory-
aware animated transition method comprising two steps: trajectory-
driven path generation and object layout generation. As shown in
Fig. 1(d), we create “bundled” animation paths for groups of objects
that share similar movement trajectories. These animation paths
are generated by a bottom-up hierarchical edge bundling algorithm,
which progressively bundles similar trajectories, level by level, ef-
fectively capturing both the global trend and local hotspots. To
minimize occlusion, we apply an incremental circle packing algo-
rithm, sequentially generating the layout at each local hotspot. The
animation is then rendered using an interpolation-based method.

We evaluate RouteFlow through a quantitative experiment on
real-world data and a controlled user study. The results indicate
that compared with the state-of-the-art methods, RouteFlow better
facilitates identifying the global trend and locating local hotspots

while performing comparably in tracking objects’ movements. The
main contributions of our work include:

o A formulation of designing animated transitions as a sequen-
tial optimization of bus routing and seat allocation problems.

e RouteFlow, a trajectory-aware animated transition
method that consists of a bottom-up hierarchical edge
bundling algorithm and an incremental circle packing
algorithm. The open-source implementation is available
at https://github.com/Trajectory- Anim/Trajectory- Aware-
Animated-Transitions.

e A quantitative experiment and a user study evaluating per-
formance on tracking objects’ movements, identifying the
global trend, and locating local hotspots.

2 Related Work

There are two main tasks for animated transitions: tracking ob-
jects’ movements and identifying the trend. Most existing ef-
forts focus on tracking objects’ movements from temporal and
spatial perspectives. The temporal perspective includes adjustments
such as refining movement speed [15], staging [24, 26, 55], and stag-
gering [13]. The spatial perspective focuses on the animation paths
of objects [17, 26, 49, 50]. Our work falls into the latter perspective.

Animation paths play a crucial role in tracking objects’ move-
ments [18, 37]. According to Heer and Robertson [26], simple tra-
jectories are effective in minimizing confusion and enhancing pre-
dictability, thereby making it easier for users to track objects’ move-
ments. A direct method to achieve simplicity is to use straight lines
connecting the start and end positions of the movement [11]. To
provide more natural and engaging movements while maintaining
simplicity, later research used smooth curves, such as arcs [16, 50]
and B-splines [6]. Building on these advancements, Du et al. [17]


https://github.com/Trajectory-Anim/Trajectory-Aware-Animated-Transitions
https://github.com/Trajectory-Anim/Trajectory-Aware-Animated-Transitions

RouteFlow: Trajectory-Aware Animated Transitions

* i 3
) [ "
- IR
: 2)Travel
’l\\,; % together  As) Disembark
i )

\ \ &
i A1)Gather and board

(a) Passengers gather and board the bus, travel together, and disembark

CHI ’25, April 26-May 01, 2025, Yokohama, Japan

o O
© @ Move
%O together \By Diverge
\By Converge \

ReSAN

g o°
(b) Objects converge, move together, and diverge

Fig. 2. Illustration of our analogy.

explored bundling animation paths to coordinate group movements,
which improved group tracking but could introduce the occlusion
issue. To address this, Wang et al. [49] utilized vector fields to
coordinate movements for each group and separated the anima-
tion paths mutually to reduce occlusion among them (Fig. 1(c)).
However, this separation can cause much deviation from the in-
put trajectories. In contrast, RouteFlow creates bundled animation
paths for objects with similar trajectories and reduces occlusion by
applying non-overlapping constraints on the object layout.

In addition to tracking objects, animated transitions are widely
used to identify the global trend [40]. Empirical studies have dis-
cussed the potential of careful animation designs for trend identifi-
cation [4, 9]. Recently, Zheng et al. [55] proposed the focus+context
grouping method for animated transition to simultaneously track
objects and identify the global trend. This method grouped objects
with similar trends together and animated these groups sequentially
(Fig. 1(b)). It simplifies complex animated transitions by dividing
them into a sequence of simpler groups, facilitating easier track-
ing of objects while also revealing the global trend. However, this
method groups transitions solely based on the start and end posi-
tions of the objects, ignoring their trajectories. As a result, it may
fail to capture important patterns throughout trajectories, e.g., the
local hotspots where objects converge or diverge. To overcome
this limitation, RouteFlow considers the movement trajectories of
objects, aiming to balance both the global trend and local hotspots.

3 Problem Formulation

In this section, we introduce the problem formulation, including the
bus route analogy and two sub-problems derived from this analogy.

3.1 The Bus Route Analogy

We illustrate the objects’ movements in animation using the real-
world bus route analogy, where passengers travel along different
bus routes to reach their destinations. As shown in Fig. 2(a), pas-
sengers gather at bus stops and board the same bus (A1). They then
travel together along shared routes (Az). Eventually, they disembark
at designated stops when approaching their destinations or trans-
ferring to other routes (As). As such, we apply this analogy to guide
the design of our animation. As shown in Fig. 2(b), groups of objects
with similar movement trajectories converge at local hotspots (B1),
analogous to bus stops, and then move together along the shared
animation paths (B2), much like passengers on the same bus. As

the animation progresses, these objects may diverge to reach their
destinations separately (B3).

Based on this analogy, we design our animation, RouteFlow,
to capture both the global trend and local hotspots. By grouping
objects with similar trajectories and moving them along shared
animation paths, we reveal the global trend, just as the bus routes
that passengers travel along. Meanwhile, objects converge or di-
verge at specific local hotspots, similar to passengers boarding
and disembarking at bus stops. This allows us to simplify complex
and cluttered trajectories in animation while ensuring that critical
convergence and divergence points are preserved.

Our animation leverages the Gestalt principles of Common Fate
and Proximity [45, 47] to shape the perception of grouping. The
Common Fate principle states that visual elements moving together
are perceived as a group [9]. Accordingly, objects moving together
along the same animation path are interpreted as a cohesive group.
The Proximity principle states that visual elements close to one
another are perceived as part of the same group [47]. In this case,
we position objects with similar trajectories in close proximity,
simulating passengers on the same bus.

To create the animation, we should generate the animation paths
in a way that is similar to planning bus routes. Furthermore, since
multiple objects often move simultaneously along the same anima-
tion path, we should minimize occlusion in animation, ensuring
that each object has its own position, like passengers having indi-
vidual seats on a bus. In this process, the seat allocation depends on
the bus routes, as the bus routes determine which passengers are
on the bus and where they board and disembark. This dependency
naturally lends itself to sequential optimization [2]. In sequential
optimization, the overall problem is decomposed into smaller, man-
ageable sub-problems that are solved in sequence. The solution
to each sub-problem then informs and serves as the input for the
subsequent one, ensuring a cohesive and efficient resolution of the
entire problem. Accordingly, we decompose the problem into two
sub-problems: trajectory-driven path generation (bus routing) and
object layout generation (seat allocation). Next, we detail these two
sub-problems and their respective optimization goals.

3.2 Trajectory-Driven Path Generation

In the context of the bus routing problem, there are two main opti-
mization goals: efficiency and effectiveness [31]. Efficiency involves
minimizing operational costs, such as reducing the total length
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Fig. 3. The pipeline of our method.

of the bus routes. One of the most effective strategies is route ag-
gregation. This strategy encourages passengers to share the same
route as much as possible during their journeys. The key is to iden-
tify groups of passengers with similar trajectories and then design
routes that accommodate these shared trajectories. Likewise, in
animation, we should group objects with similar trajectories and
share their animation paths to reduce the total path length. This
consolidates similar movements, allowing users to easily perceive
the global trend in animation. However, overemphasizing efficiency
can lead to excessive route aggregation, forcing some passengers to
deviate far from their intended trajectories and causing significant
detours. On the other hand, effectiveness focuses on meeting passen-
gers’ travel demands by ensuring they can successfully reach their
destination without excessive detours. This requires minimizing
the deviation between the aggregated route and each passenger’s
intended trajectory. One solution is to set up proper bus stops in
high-demand locations to satisfy more passengers’ demands. In
animation, the resulting animation paths should align closely with
the input trajectories of the objects and thus better reveal critical
local hotspots where objects converge or diverge.

As such, we derive two primary optimization goals for trajectory-
driven path generation:

e Minimize the total animation path length by aggre-
gating animation paths for groups of objects with similar
trajectories.

e Minimize the deviation from the input trajectories by
constraining the distance between the input trajectories to
their aggregated paths.

3.3 Object Layout Generation

There are two main optimization goals when allocating seats: max-
imize capacity and avoid overcrowding. The first optimization goal
is to maximize capacity. Similar to buses efficiently filling seats, the
object layout should be designed to reduce empty space to enhance
compactness. To achieve this, we strive to position similar objects
close together to reduce gaps between them. This not only opti-
mizes space utilization but also fosters a sense of group cohesion
among closely placed objects, aligning with the Proximity principle.
The second optimization goal is to avoid overcrowding, which can
be addressed through three strategies. First, when passengers are on
the same bus, each should have their own seat to avoid interfering

with others. Second, co-travelers who board or disembark together
should sit close to maintain group cohesion and avoid mixing with
the crowd. Third, passengers who disembark first should sit closest
to the exit (the principle of “first out, closest to the exit”), facilitating
a smoother queueing process and mitigating potential overcrowd-
ing during disembarkation. Correspondingly, in our animation: 1)
objects moving along the same path should remain visible and not
overlap; 2) objects that converge or diverge together should be
grouped closely to avoid mixing with other groups; and 3) objects
should be placed based on their disembarking order and positions.
Based on the analysis above, this problem involves two primary
optimization goals:

e Maximizing compactness by reducing empty space in the
layout.

e Minimizing occlusion by 1) applying the non-overlapping
constraint within a group of objects moving together, 2)
keeping objects that converge or diverge together as a group,
and 3) following the principle of “first out, closest to the exit.”

4 Method

Fig. 3 shows the pipeline of our method. Given trajectory data as
input, it consists of two modules: trajectory-driven path genera-
tion and object layout generation.

4.1 Trajectory-Driven Path Generation

An edge bundling algorithm can effectively minimize both the total
path length and the deviation from the input trajectories in generat-
ing the animation paths. However, aggregating all the trajectories
simultaneously presents two issues. First, it fails to identify local
hotspots at multiple levels of granularity, which are pervasive in
real-world applications [35]. Second, the real-time animated tran-
sitions require high scalability of the algorithm. To address these
issues, we develop a bottom-up hierarchical edge bundling algo-
rithm that progressively bundles similar trajectories, level by level.
As shown in Fig 3(b), it captures local hotspots across multiple
levels of granularity while revealing the global trend. At each level,
we adopt a force-directed strategy [27, 42] to bundle the edges. The
core of our algorithm lies in the design of the forces that drive the
bundling process, along with a bottom-up bundling that progres-
sively bundles trajectories.
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4.1.1 Force Design. Existing force-directed edge bundling algo-
rithms model trajectories as a series of control points and apply
forces to adjust their positions [27, 42]. They typically adopt two
types of forces: attraction force and spring force. However, they
often fail to preserve local hotspots because these forces ignore the
original positions of these input trajectories. To address this issue,
we introduce a new force, the anchor force, to reduce deviation
from the input trajectories. Fig. 4 illustrates how our algorithm
incorporates these three types of forces. Given the trajectory set
S and a pair of trajectories u and v, the three types of forces are
defined as follows:

e Attraction force (Fy;;) is applied between control points
on different trajectories to draw them closer together. This
force bundles similar trajectories. According to Selassie et
al. [42], Fay¢ is defined as:

n(vj —up)
Co(n? + |lui —vj[|?)?’

Fate(ui, 05) = (1)
where u; and v; represent the i-th and j-th control points on
these trajectories, and ||u; — v;|| denotes the Euclidean dis-
tance between them. The weighting parameter 5 controls the
rate at which the force diminishes with increasing distance.
A larger 1 causes Fy;+ to decrease slower, thereby extending
its influence range. C, denotes the number of control points
on trajectory v.

e Spring force (Fsp,) is applied between adjacent control
points on the same trajectory. This force promotes uniform
distribution of control points along the trajectory and avoids
highly curved trajectories. According to Holten et al. [27],
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Fspr is defined as:
Fspr(ui) = Cy(uir1 +uj—1 — 2u;), 2

where C, is the number of control points on trajectory u.

o Anchor force (Fg;¢) is applied to each control point, pulling
it back toward its position in the input trajectories. This force
prevents the current trajectories from deviating too far from
the input trajectories. Fgp is defined as:

’
u; —uj

2
e, M
ST

Fanc(u;) = ||u; (3)

- - w-u; .
where u] denotes the original position of u;, and m is
i L
a unit vector indicating the direction of the force.

Based on the above force analysis, the resultant force on the i-th
control point of trajectory u is calculated as:

Cv
Fu) = () > Fare (ui,07)) + @Fspr (us) + BFanc (). (4)
vely, j=1
Here, I3, denotes the set of top-k similar trajectories of u. The
parameters  and f balance the three types of forces. In our imple-
mentation, they are determined as 5 and 1 through a grid search.

4.1.2 Bottom-Up Hierarchical Edge Bundling. Progressively
bundling similar trajectories at each level of granularity involves
two key aspects. The first is how to select the most similar
trajectories to consider when applying forces at each level. Existing
edge bundling algorithms assess edge similarities through compati-
bility metrics, which consider factors such as topology [42] and
importance [39] but often fail to capture trajectory similarities. To
better capture trajectory similarities, we design our compatibility
metric based on dynamic time warping (DTW) [36], a widely
accepted metric for assessing trajectory similarity [54]. DTW
calculates the distance between two trajectories by finding the
optimal alignment between points on them, thereby capturing
the overall similarity between the entire trajectories [36]. Given
two trajectories (u, v) and their DTW distance (DTW (u, v)), the
compatibility between u and v is defined as:

compatibility (u,v) = 1 — norm(DTW (u, v)), (5)
where norm(-) denotes the min-max normalization to scale the

distance into the range [0,1]. To reduce computational complexity,
we only consider the top-k similar trajectories according to the
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Fig. 5. Illustration of our bottom-up hierarchical edge bundling algorithm.
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compatibility metrics. In our implementation, k is a user-specified
parameter that is set as five by default.

The second is how to hierarchically bundle these trajectories. At
each level, similar trajectories are bundled, revealing local hotspots
where they converge and diverge. To identify local hotspots across
multiple levels of granularity, it is crucial to preserve the conver-
gence and divergence identified at lower levels. Therefore, we deter-
mine the bundled portions of trajectories at each level by measuring
the distances between control points, as shown in Fig. 5. Each bun-
dled portion will be merged into a single trajectory, which serves as
input for the next level, where they are further bundled. Through-
out this process, the identified local hotspots remain unchanged,
as they are excluded from the bundled portions and unaffected by
further bundling. At each level, the three types of forces are applied.
When moving to the next level, the attraction force is increased
tenfold to adapt to the sparser distribution of trajectories.

To evaluate the effectiveness of our algorithm, we compare it
with two representative edge bundling algorithms, divided edge
bundling (DEB) [42] and multilevel agglomerative edge bundling
(MAEB) [22]. We assess these methods based on their efficiency in
reducing total path length and deviation from the original paths.
The results show that our algorithm achieves the lowest deviation
and performs comparably with the baseline algorithms in terms of
ink ratio. Details can be found in Appendix A.
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4.2 Object Layout Generation

The optimization goals described in Sec. 3.3 are achieved in
three ways. First, to reduce the empty space and satisfy the non-
overlapping constraint for a group of objects (Fig. 6A), we use a
circle packing algorithm [51] to generate the object layout. Second,
to keep objects that converge or diverge together as a group (Fig. 6B),
an incremental circle packing algorithm is developed. Third, to fol-
low the principle of “first out, closest to the exit"(Fig. 6C), we place
objects based on their disembarking order and positions.

Just as passengers only adjust their seats when boarding or dis-
embarking along the bus route, we update the layout incrementally
only at the local hotspots. To achieve this, we first determine the
order of local hotspots for layout generation by constructing a
directed acyclic graph (DAG, Fig. 7(a)) and then incrementally gen-
erate the layout at each local hotspot (Fig. 7(b)). In the DAG, nodes
represent local hotspots, and directed edges indicate the movements
of objects between these local hotspots. We perform a reverse topo-
logical sort on the graph to generate the order of local hotspots.
Then, we incrementally generate the layout at local hotspots accord-
ing to their order. The basic idea of generating the layout at each
local hotspot is to generate a layout for each newly arriving group
and then pack these new layouts with those of previous groups. As
shown in Fig. 7, when packing the objects at a given local hotspot
A, they are placed to preserve their relative positions. This prevents
occlusion during disembarking. Inspired by Goértler et al. [23], we
adopt a force-directed algorithm and apply two types of attraction
forces (Fig. 7(b)). The first force moves all objects/groups toward
the current local hotspot, while the second attracts neighboring ob-
jects/groups together. To avoid occlusion, we model objects/groups
as rigid bodies and use the Box2D engine [7] for implementation.

4.3 Implementation

After generating the animation paths and object layout at all the
local hotspots, we use an interpolation-based method to render
smooth animations. This method synchronizes the movements
based on the timing of the local hotspots and the objects’ start and
end points. To simplify, we refer to these collectively as “point” We
ensure that 1) groups of objects that converge or diverge together

Attraction force
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(b) Generate the layout at each local hotspot

Fig. 7. Illustration of our incremental circle packing algorithm.



RouteFlow: Trajectory-Aware Animated Transitions

Scan line
[ ] - °
\. \.%.4.—).
/ —
° / AN
t=0 t=1 t=2 t=3 =

Fig. 8. Illustration of the scan line moving through all the
local hotspots and the objects’ start and end points.

arrive at or leave the local hotspots at the same time and 2) exces-
sively fast speeds are avoided. As shown in Fig. 8, we use a scan
line that moves through all points, assigning their timing as when
they intersect with the scan line. The movement direction of the
scan line is determined by the vector formed between the average
start and end positions of all animation paths. However, paths that
form a large angle with the scan line’s movement direction can
result in excessively high speeds of objects. To address this, we
iteratively adjust the timing of points until the maximum speed is
less than twice the minimum speed. If we detect excessively high
speed between two connected points, we adjust the timing by either
delaying the latter point or advancing the former at random. We
interpolate between points to render the animation after complet-
ing the iterative adjustment. To further enhance smoothness, we
apply the slow-in, slow-out technique [15].

5 Evaluation

To demonstrate the effectiveness of RouteFlow, we conducted a
quantitative experiment and a user study.

5.1 OQuantitative Evaluation

Datasets. The quantitative evaluation was conducted on seven
datasets from real-world applications: Taxi [52, 53], BirdMap [29],
Railway [25], MEIBook [8], OpenSkyAirline [38], US Migration [27],
DanishAIS [3]. These datasets were collected from three common
areas in trajectory data analysis, including transportation, sociology,
and ecology. We preprocessed the raw data through several steps,
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including noise filtering, trajectory compression, and merging of
redundant trajectories.

Baseline methods. We selected two state-of-the-art animated tran-
sition methods for comparison. The first method, the focus+context
grouping method, simultaneously facilitates tracking objects’ move-
ments and identifying the global trend by breaking down transitions
into groups [55]. We used the default parameters reported in the
paper. The second method, the vector-field-based method, is the
state-of-the-art method in terms of tracking objects’ movements by
utilizing vector fields to generate smooth, non-linear paths [49]. As
the original paper did not provide specific parameter settings, we
performed a grid search to find the optimal parameters. Moreover,
since the vector-field-based method requires predefined groups, we
used the grouping results from the focus+context grouping method
for consistency.

Evaluation criteria. Previous studies classified the metrics into
three types: occlusion, deformation, and dispersion [13, 15, 17, 49].
We adopted the metrics summarized by Wang et al. [49] as they
are tailored for objects with groups.

We denote all the frames in the animation as T, a particular frame
as t, and all the objects as P.

Occlusion measures the overlap between objects. This metric is
useful for evaluating the capability of an animation in facilitating
the tracking of objects’ movements. High occlusion reduces the
visibility and distinguishability of moving objects, making these
objects harder to distinguish and track [13, 15].

Specifically, overall occlusion (occlusion,) measures the overlap
between all objects during the entire animation.

1 2p,qeP,prq overlap(p, g, t)

occlusiony (T) = — ,
’ IT| [PI(|P] - 1)

teT

where overlap(p, g, t) is an indicator function with value 1 if objects
p and q overlap at frame ¢, and 0 otherwise.

Within-group occlusion (occlusion,,) measures the overlap be-
tween objects in the same group.
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where K is the number of groups, G; is the set of objects in the i-th
group, and Tg, is the frames of the group G;.

Table 1: Comparison between different methods, including the focus+context grouping method (F+C), the vector-field-based
method (VF), and RouteFlow. For all four metrics, lower values are better.

Dataset Overall occlusion Within-group occlusion Deformation Dispersion
‘ F+C VF RouteFlow  F+C VF RouteFlow  F+C VF RouteFlow  F+C VF RouteFlow

Taxi [52, 53] 0.00123  0.00180 0.00048 0.01963  0.00626 0.00606 0.00081 0.00107 0.00062 0.05948  0.06766 0.02606
BirdMap [29] 0.00277  0.00958 0.00213 0.02773  0.02607 0.00904 0.00152  0.00160 0.00064 0.13762  0.12494 0.03258
Railway [25] 0.00229 0.01351 0.00142 0.11960  0.10420 0.02875 0.00128 0.00140 0.00063 0.10629  0.10950 0.03090
MEIBook [8] 0.00132  0.00566 0.00066 0.01362 0.01196 0.00675 0.00079  0.00105 0.00064 0.06699 0.06817 0.02430
OpenSkyAirline [38] | 0.00076 0.00394 0.00055 0.01934 0.01814 0.00571 0.00082  0.00117 0.00061 0.08047 0.08216 0.03007
US Migration [27] 0.00115 0.00408 0.00072 0.01107  0.01027 0.00295 0.00097  0.00147 0.00066 0.13015 0.13345 0.03802
DanishAlIS [3] 0.00047  0.00120 0.00012 0.01435  0.00460 0.00266 0.00122  0.00089 0.00087 0.11688 0.12816 0.08611
Average ‘ 0.00148  0.00561 0.00088 0.03097  0.02469 0.00842 0.00122  0.00141 0.00065 0.10627 0.10858 0.03727
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Deformation measures the changes in distance between objects
within the same group across consecutive time frames. Lower defor-
mation indicates that the relative object positions within the group
remain stable, making it easier to track the objects of interest.

deformation(T) =
K
1 1
K Z g,

dist(p, g, t) is the distance between objects p and q at frame ¢.

Dispersion measures how spread out objects in the same group
are. Lower dispersion indicates that the members of a group are
moving more closely together, enhancing the perception of the
group as a whole. This facilitates more effective tracking of the
group’s collective movements, thereby enhancing the identification
of the global trend.

2p.qeG prq |dist(p, g, 1) — dist(p, g, t — 1)]
|Gil(IGi| = 1) '
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K .
1 1 )y g dist(p, g, t)
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The aforementioned three metrics focus on tracking objects’
movements and identifying the global trend. To the best of our
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knowledge, there is no existing metric that adequately measures the
preservation of local hotspots in animation. Additionally, the em-
ployed real-world datasets lack ground truth for local hotspots. As
a result, we supplement the evaluation of preserving local hotspots
with a user study using several synthetic datasets, which is de-
scribed in Sec. 5.2.

Results. Table 1 presents the comparison results between Route-
Flow and the baseline methods. RouteFlow performs the best on all
datasets and all metrics.

Occlusion. RouteFlow achieves lower overall occlusion and
within-group occlusion scores compared to the two baseline meth-
ods. This improvement is mainly due to differences in object layout.
The baseline methods do not explicitly optimize the overlaps within
groups (Fig. 9A and Fig. 9B), and in particular, the vector-field-based
method may even introduce overlaps between groups as it moves
all objects simultaneously. In contrast, our incremental circle pack-
ing algorithm reduces overlaps by employing three strategies: 1)
applying a non-overlap constraint to minimize occlusion between
objects (Fig. 9C), 2) keeping objects that converge or diverge to-
gether as a group (Fig. 9D), and 3) following the principle of “first
out, closest to the exit” (Fig. 9E).

Deformation. Compared to the two baseline methods, Route-
Flow exhibits the least deformation. The focus+context grouping
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Fig. 9. Object positions at a specific frame in the animations generated by three methods on the BirdMap dataset. Here, overlaps
are highlighted as red strokes, and the distributions of objects are shown as blue contours. The metric values for these frames
are displayed below each sub-figure. The detailed analysis of these values is provided in Appendix B.
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Table 2: The result of running time on different modules.

D ‘ Attribute Time cost (second)
ataset

‘ Size Trajectory-driven path generation Object layout generation Total
Taxi [52, 53] 73 0.06 0.03 0.09
BirdMap [29] 109 0.10 0.06 0.16
Railway [25] 129 0.11 0.06 0.17
MEIBook [8] 174 0.11 0.10 0.21
OpenSkyAirline [38] 187 0.14 0.11 0.25
US Migration [27] 258 0.23 0.22 0.45
DanishAIS [3] 316 0.46 0.37 0.83

method changes the layout of every frame as objects follow their
input trajectories. Similarly, the vector-field-based method causes
unsynchronized movements due to varying velocity vectors among
objects at different positions, leading to layout changes in subse-
quent frames. Conversely, RouteFlow incrementally updates the
layout only at local hotspots, with the aim of balancing readability
and stability in these refinements. This balance greatly reduces
deformation during animated transitions.

Dispersion. RouteFlow achieves lower dispersion compared to

the other methods. The focus+context grouping method, which
groups objects based solely on their start and end positions, records
the highest dispersion. This method might group objects with dif-
ferent trajectories together due to their similar start and end posi-
tions, increasing dispersion (Fig. 9F). The vector-field-based method,
which generates the animation paths of objects using a vector field,
tends to disperse the input trajectories (Fig. 9G), leading to a less
compact layout (Fig. 9H) and high dispersion. In contrast, our incre-
mental circle packing algorithm keeps the objects compact (Fig. 9C),
resulting in lower dispersion.
Running Time. Table 2 shows the average running times for each
module of our animation method on real-world datasets, where
object sizes vary from 73 to 316. The performance tests were con-
ducted on a Windows PC with an Intel i9-13900K CPU. We averaged
results over five trials to minimize randomness. The average run-
ning time per dataset is within 1 second, which is fast enough for
designing animated transitions. The object layout generation mod-
ule is the most time-consuming because it requires incremental
generation for the layout of each local hotspot. In contrast, the
trajectory-driven path generation module is less demanding and
achieves stable results in 300 iterations.

Start/End B-spline control point

(a) Generate the global trend

Global trend

(b) Determine local hotspots

5.2 User Study

We conducted a user study to evaluate how effectively people use
RouteFlow to track objects’ movements and identify the global trend
and local hotspots. We formulated three hypotheses: participants
perform more accurately with RouteFlow in tracking objects’ move-
ments (H1), identifying the global trend (H2), and locating local
hotspots (H3) compared to two baseline methods, the focus+context
grouping method and the vector-field-based method.

5.2.1 Study Setup.

Participants. We recruited 15 participants (12 males and 3 females,
denoted as P1-P15) from local universities. They were graduate
students majoring in computer science (12) and information design
(3), aged from 22 to 32 years (mean = 24.47, SD = 2.53). All of
them reported to have normal vision and no color deficiencies.
Upon completion, each participant received a $30 compensation,
independent of their performance.

Apparatus. The user study was conducted on a personal computer
equipped with a 27-inch display with a resolution of 3840 X 2160
pixels and a 60 Hz refresh rate. Objects were presented as circles
with a radius of 9 pixels (0.20 cm), filled in black color, following the
previous practice [17, 49]. The animation window measured 1250 X
1250 pixels (27.0 x 27.0 cm) with a white background. Participants
were seated at a distance of 40 cm from the display.

Datasets. We used synthetic data for a controlled study setting in-
stead of real-world data, which may lack ground truth for the global
trend and local hotspots. This follows the common practice [17, 49].
Fig. 10 shows our dataset generation process, involving three steps.
First, we generated a smooth global trend trajectory using B-splines.
Next, we determined local hotspots by sampling points along the

Local hotspot
1

Converge Diverge Trajectories

(c) Create trajectories

Fig. 10. The data generation pipeline.
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global trajectory and randomly classifying them as converging
or diverging points. Finally, we created trajectories for objects by
adding random perturbations to the global trend, avoiding overlap
between start and end positions. To achieve better diversity and a
certain level of complexity, we finalized our design through several
iterations. In the final iteration, there were two types of global
trend (one or two bends in the B-spline), and three types of local
hotspot assignment (1 convergence + 1 divergence, 2 convergences
+ 1 divergence, and 1 convergence + 2 divergences). Each dataset in-
cluded 30 trajectories. To control the experiment duration and keep
participants focused, we generated datasets for each combination
of trend type and local hotspot type and conducted two repetitions
per combination, resulting in 12 datasets (2 types of the global trend
X 3 types of local hotspot assignment X 2 repetitions).

Task design. Our study consisted of three tasks, each iterated and
refined through small-scale pilot studies. For each task, participants
were asked questions with four options (one correct, three incorrect)
along with an additional option for “I am not sure”

T1—Tracking objects’ movements: Participants were required to
track the movement of target objects to identify their end positions,
and then select one answer from five options. This task design re-
ferred to the previous practices [17, 49]. We set the number of target
objects to three, all from the same group, to simplify the task. We
generated the incorrect options by randomly replacing the correct
targets with their nearest neighbors based on their end positions.

T2—Identifying the global trend: Participants were asked to ob-
serve the overall movement of all objects to identify the global
trend, and then select one answer from five options. Initially, we set
the background to be fully white, whereas feedback from the pilot
study indicated difficulty in observing and locating the movements.
To alleviate this issue, the background canvas was divided into 8 X
8 grid, colored alternatively in white and grey. The three incorrect
options were generated by adding random perturbations to the
correct trend, ensuring that they passed through different grids to
be distinguishable from the correct option.

T3—Locating local hotspots: Participants were asked to identify
the grids containing local hotspots. Similar to T2, to facilitate lo-
cating local hotspots, we employed a white and grey background
canvas. Each answer option included two marked grids: one for
convergence and one for divergence. Incorrect options were gen-
erated from the correct option by randomly replacing one correct
grid with a neighboring grid. To simplify the task, participants
were allowed to click and mark grids that might assist them while
viewing the animation and refer to these marks when answering.
Study protocol. Participants started by signing consent and watch-
ing a tutorial video about the study procedure and tasks. We then
provided three brief videos, each explaining a different animation
method. The study adopted a within-subjects design, requiring each
participant to complete all three tasks using three different methods.

For each task, we designed a practice session and a test session.
The practice session familiarized participants with the interface
and tasks, through six trials, two for each method. In each trial,
participants initially saw all objects in grey points. Particularly, we
highlighted the target objects in red for the tracking task. They
then clicked to start the animation. All objects in the tracking task
transitioned to grey and then to black within the first 0.5 seconds. In
the other two tasks, the objects turned black directly. This allowed
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participants to recognize the target objects and prepare to follow
their movements. After the animation, participants clicked to start
the question and could not review the animation anymore. In the
practice session, we provided correct answers to help participants
check their understanding and encouraged them to ask questions.

After completing the practice session and confirming that they
fully understood the tasks and methods, participants advanced
to the test session, which consisted of 36 trials (12 datasets X 3
methods). Unlike the practice session, correct answers were no
longer provided during the test session. To counterbalance the order
of methods, we divided 15 participants into five groups, three for
each group. Within each group, we used an expanded Latin square
and applied a cyclic shift to the method order for each participant.
Additionally, to alleviate the learning effect, we randomly mirrored
and rotated the datasets. Participants were allowed to take short
breaks after each task or whenever they requested one.

In total, each participant finished 108 trials (3 tasks x 3 methods
X 12 datasets), leading to 1,620 total trials (15 participants X 108
trials). After finishing each task, we assessed participants’ workload
and fatigue levels using NASA’s Task Load Index [41] and asked
about their preferred methods and the reasons for their preferences.
For all trials, we recorded participants’ answers and completion
times. The entire study lasted 75-90 minutes. Additional study de-
tails are provided in Appendix C, and results are provided in the
supplemental material.

5.2.2  Result Analysis. We analyzed three types of data: the accu-
racy of multi-choice questions, participants’ subjective ratings for
workload, and their stated preferences.

Accuracy. For each task, we computed participants’ average accu-
racy across different methods. As data is not normally distributed,
we conducted Friedman tests for each task, followed by Wilcoxon
signed-rank tests with Bonferroni correction for pairwise compar-
isons of different methods. We report the statistical test results and
the box plots in Fig. 11. The Friedman test results indicate signif-
icant differences among the methods in all three tasks: tracking
objects’ movements (x%(2) = 23.16,p < 0.0001), identifying the
global trend (x2(2) = 9.59, p = 0.00083), and locating local hotspots
(x?(2) = 20.33, p < 0.0001). In the subsequent analysis, we focus
on the pairwise comparisons.

T1—Tracking objects’ movements: In pairwise comparisons, our
RouteFlow method significantly outperforms the focus+context
grouping method (average: 0.865 vs. 0.421, p = 0.001). However,
RouteFlow only shows a small difference compared to the vector-
field-based method in average accuracy (0.865 vs. 0.930), and the
paired test indicates no significant difference (p = 0.275). Therefore,
the results can partially support H1. Participants using the fo-
cus+context grouping method show a significantly lowest accuracy.
This is because both our method and the vector-field-based method
optimize the animation paths to reduce complexity, while the fo-
cus+context grouping method directly uses the input trajectories as
its animation paths. Correspondingly, the majority of participants
(10 out of 15) reported that the animation paths in the focus+context
grouping method were more complex and had greater occlusion
compared to the other two methods. This feedback aligns with our
comparison results in Sec. 5.1, where the focus+context grouping
method achieves the highest within-group occlusion. In addition,
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Fig. 11. User study results on three tasks. Here, * indicating p < 0.05, ** indicating p < 0.01.

we asked participants about their different performances using
RouteFlow and the vector-field-based method. P12 appreciated the
grouping in RouteFlow for tracking, saying “The relative positions
of objects are stable within the group. I can track one or two targets
inside the group and use them as a reference to locate other targets.”
However, we also received feedback expressing different opinions.
For instance, P2 commented, “The objects in RouteFlow are grouped
closely. I sometimes confuse the targets with other objects.” P2 pre-
ferred the vector-field-based method, noting “objects are relatively
spread out. Even when occlusion occurs, it is easy to distinguish the
targets by following their movements.”

T2—Identifying the global trend: RouteFlow significantly outper-
forms the focus+context grouping method (p = 0.021) and the
vector-field-based method (p = 0.028), thereby supporting H2.
Participants described RouteFlow as having a sense of “unity” (P1,
P2, P4, P10, and P11) and showing “a clear trend” (P1, P4, P5, P6,
and P11). Besides, they explained their performances using the two
baseline methods related to the dispersion. P2 complemented that
“Although [the focus+context grouping method] depicts a clear trend
of each group, it requires memorizing and comparing the movements
of several groups to get the global trend, which brings extra burden.”
P4 mentioned the vector-field-based method, saying ‘Tt is distract-
ing to follow the objects that are dispersed in different locations but
move synchronously.” This feedback aligns with the quantitative
result in Sec. 5.1, where these baseline methods showed higher
dispersion compared to RouteFlow. Additionally, P1 commented
that the animation design for groups of objects in RouteFlow can
be a double-edged sword for capturing the global trend: “[It allows
me] to infer the global trend based on groups’ movements. However,
it may be disrupted due to the convergence and divergence [of the
groups].” This further highlighted the importance of balancing the
global trend and local hotspots.

T3—Locating local hotspots: RouteFlow achieves an average accu-
racy of 0.832, which is significantly better than the focus+context
grouping method (p = 0.002) and the vector-field-based method
(p = 0.002). Therefore, the results can support H3. Participants

described the convergence and divergence of objects in RouteFlow
as ‘clearly noticeable” (P1, P2, P12, P13, and P15) and “apparent”
(P6, P8, and P10). In contrast, the other two methods required
extra cognitive effort. Five participants (P2, P6, P11, P12, and
P15) complained that animating different groups separately in the
focus+context grouping method made it difficult to distinguish the
locations where objects converge or diverge. Although the vector-
field-based method animated all objects together, users still found it
difficult to identify local hotspots. P11 commented from the spatial
perspective, “Objects are dispersed. I cannot confidently tell the loca-
tions [of the local hotspots].” P2 noticed “Objects do not pass through
their shared positions simultaneously.” This issue arises because,
while the vector-field-based method animates objects concurrently,
the local hotspot locations along their individual trajectories do
not always align. Thus, participants noted temporal discrepancies
in the animation as objects passed through these local hotspots.
Workload. Fig. 12 summarizes participants’ workload and fatigue
levels using NASA’s Task Load Index [41], including mental de-
mand, physical demand, temporal demand, effort, frustration, and
performance. We conducted Friedman tests for each dimension in
each task, followed by Wilcoxon signed-rank tests with Bonfer-
roni correction for pairwise comparison among different methods.
The Friedman test results show significant differences among the
methods across all six dimensions for each task, except the effort
dimension for T2—Identifying the global trend. Next, we focus on
analyzing the pairwise comparison results.

T1—Tracking objects’ movements: The Wilcoxon signed-rank tests
indicate that both RouteFlow and the vector-field-based method
perform better than the focus+context grouping method on all six
dimensions, whereas there are no significant differences between
RouteFlow and the vector-field-based method. Further analysis of
mean values and confidence intervals reveals a subtle difference:
the vector-field-based method shows slightly lower mental and
physical demands and effort than RouteFlow. This could be due to
the relatively simpler animation paths for individual objects in this
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Fig. 12. Participants’ workload and fatigue levels according to NASA’s Task Load Index. Here, error bars show the 95% confidence
intervals. <= indicates that a smaller score is better, and vice versa. The results of pairwise Wilcoxon signed-rank tests are also
shown, with * indicating p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001.

method [49], which might require less cognitive load for tracking
compared to the bundled paths in RouteFlow.

T2—Identifying the global trend: The Wilcoxon signed-rank tests
indicate that RouteFlow outperforms the focus+context grouping
method in terms of mental demand, temporal demand, frustration,
and performance dimensions. This is because the focus+context
grouping method demands extra memory and analytical burden to
synthesize the movements of multiple groups into the global trend,
which often leads to frustration.

T3—Locating local hotspots: The Wilcoxon signed-rank tests indi-
cate that RouteFlow outperforms the other two methods on the five
dimensions, except for effort, where RouteFlow only outperforms
the focus+context grouping method. These advantages align with
participants’ accuracy in completing the task. Regarding the effort
dimension, participants found the background grids during the
animation helpful, as they reduced the effort needed to observe and
locate movement.

Preference. We also collected participants’ preferences for the
three methods in three tasks, as summarized in Fig. 13.

T1—Tracking objects’ movements: Participants’ opinions varied.
Eight participants preferred RouteFlow, and seven preferred the
vector-field-based method. This was slightly different from the
overall subjective workload ratings, where participants thought
RouteFlow brought a bit more mental and physical burden and
effort. We noticed that P10 and P15 performed equally accurately
with RouteFlow and the vector-field-based method but reported
higher subjective performance and preference for RouteFlow. They
commented that objects in RouteFlow were “less occluded”, making
them “more convinced.”

T2—Identifying the global trend: 13 participants preferred Route-
Flow. Specifically, P1 appreciated that RouteFlow gradually revealed
the global trend along with the group movement, just like “painting
with a brush.” In contrast, P6 preferred the focus+context grouping
method, explaining ‘Tt is easier to connect the movements of different
groups into a global trend.” P10 liked the vector-field-based method

and noted that ‘T need to memorize the positions objects pass through
to identify the global trend. [The vector-field-based method] requires
less memory burden, as I can observe objects moving simultaneously
in the global trend.”

T3—Locating local hotspots: All participants ranked RouteFlow at
the top, indicating a strong advantage of our method. Their reasons
mainly focused on the clear and noticeable animated transitions,
showing groups that were converging and diverging.
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Fig. 13. Participants’ preference ranks of different methods
on three tasks. Smaller ranks indicate stronger preferences.

6 Discussion and Future Work

As demonstrated by the results from both the quantitative evalu-
ation and user study, the primary benefit of RouteFlow lies in its
capacity to effectively reveal the global trend and identify local
hotspots. It also maintains comparable performance in tracking
objects. The participants generally gave positive feedback on its
usability. Nonetheless, they also pointed out several limitations that
deserve further investigation.

Introducing additional visual channels. RouteFlow delivers an
elaborate animation by planning animation paths and generating a
compact and non-occluded object layout. In the user study, P10, who
majored in information design, suggested including more visual
channels to enhance the expressiveness of animations. For instance,
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using different colors and brightness can help users track the tar-
geted objects [28]. Moreover, objects can be encoded in varying
sizes based on their importance, making them more easily distin-
guishable. A recent study has also validated that the variations in
object brightness and size have a positive impact on perceiving
groups [9]. In the future, we can apply a dynamic color palette to
our generated object layout to improve the animation [12].
Interactive animation adjustment. Our method automatically
generates animations based on the input trajectories, easing the
effort required for manual design. On top of the automated method,
RouteFlow can be enhanced by supporting users to interactively
design and refine animations, addressing their unique needs [49].
For example, users can directly drag to refine the animation paths or
modify the corresponding object groups and layout, and our method
can propagate the changes to the whole animation. Therefore, users
do not need to manipulate each object in detail. Besides, our method
can be integrated with dynamic parameter adjustment to balance
different types of forces in our hierarchical edge bundling for an-
imation path generation. As such, we can analyze data features
such as trajectory density, local hotspot distribution, or occlusion
levels and adjust parameters on targeted datasets or areas to iden-
tify different local hotspots. Users can also interactively specify
parameters on demands.

Supporting more trajectory patterns. While our current method
effectively highlights the global trend and local hotspots, trajec-
tory data often contains other patterns that can provide valuable
insights [54]. For instance, periodic patterns represent movements
that repeat at regular intervals, such as daily commutes or seasonal
migrations [5]. Anomalies refer to movements that deviate sig-
nificantly from the norm, representing unusual or rare behaviors,
such as a migratory bird taking an abnormal path due to envi-
ronmental disruptions [33, 34]. A practical solution is integrating
existing pattern detection techniques [10] and designing animations
to communicate these patterns effectively to users. For example,
trajectories that exhibit periodic patterns could be animated with
pulsating effects or cyclic color changes [1], clearly highlighting
their repetitive nature over time.

Scalability. RouteFlow faces scalability issues due to both algo-
rithmic capabilities and visual constraints. From the algorithmic
perspective, RouteFlow can process hundreds of moving objects in
real time. When scaled to one thousand objects, RouteFlow com-
pletes processing in around 10 seconds, making real-time animation
impractical at this scale. From the visual perspective, the number of
displayed objects is constrained by both screen space and human
perception. Especially, previous studies have shown that people
can only track a limited subset of moving objects [19, 20], making
human perception a more limiting factor. A potential solution to
address these limitations is to combine a sampling method with
our animation method. The key challenge is to identify a set of rep-
resentative samples that effectively capture both the global trend
and the local hotspots.

7 Conclusion

In this paper, we present RouteFlow, a trajectory-aware animated
transition method to enhance the analysis of the movement trend
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and object tracking in the animation process. By analogizing anima-
tion paths to bus routes and the object layout to the seat allocation,
RouteFlow offers clear and smooth animations of moving objects
along their trajectories. The key feature of RouteFlow lies in its
balanced depiction of the global trend and local hotspots, coupled
with its ability to minimize occlusion. This balance improves users’
capability to track movements and understand complex interactions
within the objects. The quantitative evaluation and user study fur-
ther validate that RouteFlow performs better than existing methods
in identifying the global trend and locating local hotspots.
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A Quantitative Experiment on Edge Bundling

We conducted a quantitative experiment to compare the effective-
ness of our trajectory-driven path generation algorithm with two
representative edge bundling algorithms. The experiment aims to
assess 1) the deviation of the bundled paths from the original ones,
and 2) the efficiency in reducing the total path length. The same
datasets used in Sec. 5.1 were employed for this experiment.
Baseline algorithms. We selected two representative edge
bundling algorithms for comparison. The first, divided edge
bundling (DEB) [42], employs the attraction and spring forces to
bundle edges with similar positions and directions. The second,
multilevel agglomerative edge bundling (MAEB) [22], hierarchi-
cally bundles similar edges to minimize the total path length. For
both algorithms, we used the default parameters reported in their
papers.

Evaluation criteria. We adopted two metrics, deviation and ink
ratio [48], which assess the deviation from the original paths and
the efficiency in reducing the total path length, respectively. Let
the original path set be S = {s1, ..., s} and the bundled path set
be S’ = {si, coSsh)

Deviation measures the misalignment of the bundled paths with
the original ones. Following the common practice [21, 44], the mis-
alignment of a bundled path s} and its original path s; is measured
by their dynamic time warping distance DTW(s;, 7). The deviation
is then calculated as the average dynamic time warping distance
across all pairs of bundled and original paths:

l n
Deviation(S,S’) = — Z DTW(si, s;
i3

Ink ratio measures the efficiency in reducing the total path
length. It is calculated as the ink of the bundled path set S’ divided
by that of the original path set S:

Ink(S")

Ink(S)’

where Ink(S) is the number of pixels occupied by the paths in S [48].
Results

Table 3 shows the comparison results on seven datasets. These
results indicate that our algorithm achieves the lowest deviation
and performs comparably with the baseline algorithms in terms of
ink ratio.

Ink ratio(S, S’) =

Table 3: Comparison between different edge bundling algo-
rithms, including divided edge bundling (DEB) [42], multi-
level agglomerative edge bundling (MAEB) [22], and our algo-
rithm (RouteFlow). Lower values are better for both metrics.

‘ Deviation Ink ratio
Dataset

| DEB  MAEB RouteFlow DEB MAEB RouteFlow
Taxi [52, 53] 0.023 0.017 0.012 0.387 0.349 0.378
BirdMap [29] 0.048 0.035 0.016 0.237  0.235 0.239
Railway [25] 0.038 0.031 0.018 0.243  0.309 0.234
MEIBook [8] 0.034 0.018 0.017 0.397  0.327 0.388

OpenSkyAirline [38] | 0.043  0.014 0.014 0.393  0.342 0.339
US Migration [27] 0.045  0.023 0.019 0.432  0.272 0.250
DanishAlS [3] 0.071  0.076 0.024 0.213  0.201 0.252

Average ‘ 0.043  0.030 0.017 0.329 0.291 0.296
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Fig. 14. Original paths and the edge bundling results on the
DanishAIS dataset.

Deviation. The baseline algorithms perform worse in terms of
deviation because they do not explicitly preserve the original paths
and often excessively aggregate paths. This leads to larger devia-
tion from the original paths and hinders the identification of local
hotspots. For example, as shown in Fig. 14(a), the DanishAIS mar-
itime transportation dataset contains two chokepoints that signif-
icantly impact maritime traffic efficiency, making them strategic
hotspots for route optimization. However, the baseline algorithms
fail to preserve these chokepoints (Figs. 14(b) and (c)). In contrast,
RouteFlow reduces the deviation from the original paths using
an anchor force and effectively preserves these two chokepoints
(Fig. 14(d)). This preservation enables more accurate and effective
route optimization.

Ink ratio. Out of the seven datasets, MAEB achieves the lowest
ink ratio in four, while RouteFlow achieves the lowest in three.
MAEB’s better performance is due to its focus on optimizing ink
ratio, but this comes at the cost of higher deviation from the original
paths. In contrast, RouteFlow balances ink ratio and deviation, sac-
rificing a small amount of ink ratio to better align the bundled paths
with the original ones. This balance is important in generating clear
and reliable animation. For example, as shown in Fig. 15(a), migra-
tory birds in the BirdMap dataset take detour paths along the Great
Rift Valley to access water or suitable habitats during their journey
from Europe to Africa. These detour paths are critical to understand-
ing the birds’ movement patterns in the context of geographical
features. However, MAEB distorts the original paths and bundles
them into straight paths to minimize the ink ratio, which obscures
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Fig. 15. Original paths and the edge bundling results on the
BirdMap dataset.

the birds’ actual movement patterns (Fig. 15(c)). Although DEB
does not explicitly minimize the ink ratio, it also bundles the paths
into straight paths and obscures the movement patterns in this
example (Fig. 15(b)). In contrast, RouteFlow effectively bundles the
paths while preserving the detour paths (Fig. 15(d)). This provides a
clearer and more reliable visual summary of the birds’ movements.

B Detailed Animation Result Analysis

To facilitate interpreting the magnitudes of the measured values,
Fig. 16 compares the animation results with different measured
values, which are generated by three methods: RouteFlow, the fo-
cus+context grouping method (F+C) and the vector-field-based
method (VF). These methods are the same as in Sec. 5.1. Fig. 16(a)
shows the positions of all objects, the same as in Fig. 9. For easy com-
parison, we select a subset of 10 objects in a group (with the orange
contour), and calculate their values for each metric in this frame
(Figs. 16(c)-(e)), except for overall occlusion, which is calculated on
all objects (Fig. 16(b)).

Occlusion. Figs. 16(b) and (c) compare the animation results
generated by the three methods in terms of the overall and within-
group occlusion. RouteFlow prevents overlap between objects when
they move together as a group, thereby achieving an occlusion score
of 0.00000 for both metrics at this frame. However, overlaps remain
unavoidable at local hotspots where objects converge and diverge.
In contrast, the focus+context grouping method and the vector-
field-based method result in object overlap to different degrees. For
example, the focus+context grouping method achieves an overall
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Fig. 16. Comparisons of the three animation results with
different metric values, which are generated by the three
methods. Here, (b)-(¢) show the different metric values of the
10 objects.

occlusion score of 0.00124, with 31 out of 51 objects overlapping,
and a within-group occlusion score of 0.13333, with 7 of the 10
objects overlapping.

Deformation. Fig. 16(d) compares the animation results gener-
ated by the three methods in terms of deformation. This metric
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measures the changes in distance between objects from the previous
frame (grey) to the current frame (dark grey). RouteFlow organizes
the objects that move together into a cohesive group, with their
relative positions changing only at local hotspots. As a result, the
deformation score is 0.00000, indicating no changes in the distance
between objects. In contrast, the focus+context grouping method
and the vector-field-based method do not explicitly manage the
object layout, leading to larger deformation scores. For example,
the focus+context grouping method achieves a deformation score
of 0.00850, indicating that the average distance between objects has
changed by approximately 1.46 times the object’s radius.
Dispersion. Fig. 16(e) compares the animation results generated
by the three methods in terms of dispersion. RouteFlow closely
groups the objects that move together, resulting in the lowest disper-
sion score of 0.01573, with the objects occupying approximately 80%
of the space within their convex hull. In contrast, the focus+context
grouping method and the vector-field-based method exhibit higher
dispersion scores. For example, the focus+context grouping method
achieves a dispersion score of 0.06006, with the objects occupying
approximately 20% of the space within their convex hull.

C User Study Settings
C.1 Synthetic Dataset Generation

As illustrated in Fig. 10, our dataset generation process involves
three steps: generate the global trend, determine local hotspots, and
create trajectories.

Since the global trend can be depicted by representative trajec-
tories [54], we generate a smooth trajectory using B-splines as the
ground truth. We include one or two bends in these B-splines, lead-
ing to 2 types of the global trend in our dataset. To achieve this, we
randomly select two points as the start and end points and sample
one (for one bend) or two (for two bends) intermediate points as
B-spline control points within the region between them. To avoid
highly curved trajectories, we ensure that the angle between any
three consecutive points (start, control points, and end) is greater
than 135 degrees.

Next, to determine local hotspots, we randomly sample points
along the generated B-spline and designate these points as ground
truth for local hotspots. Feedback from our pilot study indicates that
to balance complexity and diversity, the number of local hotspots
should be limited to two or three, with each dataset containing at
least one of the local hotspot types: convergence or divergence.
Each local hotspot is then randomly assigned as either a converg-
ing or diverging point, resulting in three possible assignments: 1
convergence + 1 divergence, 2 convergences + 1 divergence, and 1
convergence + 2 divergences. Considering the types of the global
trend and the local hotspot assignments, we generate 6 dataset
types (2 types of the global trend X 3 local hotspot assignments).
To simplify the evaluation, we 1) limit the number of branches at
the local hotspots to 2; 2) select one B-spline as the global trend
and generate another branch at the local hotspots along this B-
spline; and 3) avoid crossing between the two branches of each
local hotspot.

Finally, we generate the trajectories for the objects. Following
the user feedback and the setting of previous studies [55], we set
the number of trajectories to 30. The trajectories are generated by
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adding random perturbations to the global trend and the branches
of the local hotspots.

C.2 Method Counterbalance

In our user study, we counterbalanced the order of different meth-
ods. We divided 15 participants into five groups, with three par-
ticipants in each group. Within each group, we used an expanded
Latin square and applied a cyclic shift to the method order for each
participant. The three methods are denoted as A, B, and C. In the
test scenario, the order in which these methods were presented to
the participants in each group was as follows:

e ABC,BCA,CAB,ABC,BCA, CAB,ABC,BCA,CA
B,ABC,BCA,CAB
e BCA,CAB,ABC,BCA,CAB,ABC,BCA,CAB,AB
C,BCACABABC
e CAB,ABC,BCA,CAB,ABC,BCA,CAB,ABC,BC
A,CAB,ABC,BCA
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