
RouteFlow: Trajectory-Aware Animated Transitions 
Duan Li∗ 

School of Software 
Tsinghua University 

Beijing, China 
liduan429@gmail.com 

Xinyuan Guo∗ 
School of Software 
Tsinghua University 

Beijing, China 
yczddgj@126.com 

Xinhuan Shu 
School of Computing 
Newcastle University 

Newcastle 
Upon Tyne, United Kingdom 
xinhuan.shu@gmail.com 

Lanxi Xiao 
Academy of Arts and Design 

Tsinghua University 
Beijing, China 

tarolancy@gmail.com 

Lingyun Yu 
School of Advanced Technology 

Xi’an Jiaotong-Liverpool University 
Suzhou, Jiangsu, China 
Lingyun.Yu@xjtlu.edu.cn 

Shixia Liu† 

School of Software 
Tsinghua University 

Beijing, China 
shixia@tsinghua.edu.cn 

Abstract 
Animating objects’ movements is widely used to facilitate tracking 
changes and observing both the global trend and local hotspots 
where objects converge or diverge. Existing methods, however, 
often obscure critical local hotspots by only considering the start 
and end positions of objects’ trajectories. To address this gap, we 
propose RouteFlow, a trajectory-aware animated transition method 
that effectively balances the global trend and local hotspots while 
minimizing occlusion. RouteFlow is inspired by a real-world bus 
route analogy: objects are regarded as passengers traveling together, 
with local hotspots representing bus stops where these passengers 
get on and off. Based on this analogy, animation paths are generated 
like bus routes, with the object layout generated similarly to seat 
allocation according to their destinations. Compared with state-of-
the-art methods, RouteFlow better facilitates identifying the global 
trend and locating local hotspots while performing comparably in 
tracking objects’ movements. 

CCS Concepts 
• Human-centered computing → Visualization techniques; 
Information visualization. 

Keywords 
trajectory data, animation, edge bundling 

ACM Reference Format: 
Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia 
Liu. 2025. RouteFlow: Trajectory-Aware Animated Transitions. In CHI 
Conference on Human Factors in Computing Systems (CHI ’25), April 
26–May 01, 2025, Yokohama, Japan. ACM, New York, NY, USA, 17 pages. 
https://doi.org/10.1145/3706598.3714300 

∗Both authors contributed equally to this research. 
†Shixia Liu is the corresponding author. 

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License. 
CHI ’25, Yokohama, Japan 
© 2025 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-1394-1/25/04 
https://doi.org/10.1145/3706598.3714300 

1 Introduction 
Animating objects’ movements is widely used to facilitate tracking 
changes and observing both the global trend and local hotspots 
where objects converge or diverge [14, 43]. For example, by animat-
ing bird migration data [46], users can observe birds’ movements, 
understand the migration trend, and identify highly active locations 
where birds converge to cross the straits or diverge to bypass moun-
tains (Fig. 1(a)). Here, the global trend provides valuable insights 
into broader movement patterns, while the local hotspots serve as 
strategic locations for observation and analysis [30, 32]. 

Many research efforts have been directed toward developing 
techniques for animated transitions, aimed at helping users track 
objects’ movements. These efforts mainly focus on adjusting various 
animation parameters from temporal (e.g., speed [15], staging [26], 
staggering [13]) and spatial (e.g., animation paths [17, 49]) per-
spectives. Recent studies have further advanced these techniques. 
Zheng et al. [55] divided transitions into groups and animated 
them sequentially, thereby breaking down complex animations 
into simpler ones (Fig. 1(b)). Wang et al. [49] used vector fields 
to coordinate group movements and reduce occlusion by spatially 
separating animation paths (Fig. 1(c)). However, all these methods 
only consider the start and end positions in the objects’ trajectories. 
Although effective in conveying global trends, they often obscure 
critical local hotspots along the movement trajectories. 

Recognizing this gap, we aim to design an animated transition 
method that considers the movement trajectories of objects. By 
using these trajectories, the animations can effectively reveal both 
the global trend and local hotspots. Thus, our method provides a 
clearer understanding of local areas of high activity in their global 
context. However, designing such animations is non-trivial. First, 
balancing the global trend and local hotspots in animation remains 
challenging. Overemphasizing local hotspots may result in exces-
sive branching areas, impeding the identification of the global trend. 
Conversely, stressing the global trend heavily may obscure im-
portant local hotspots. Second, reducing occlusion in animated 
transitions is imperative yet difficult, especially when multiple 
objects move simultaneously. They may occlude each other, thus 
significantly increasing the difficulty of tracking their movements. 
Occlusion becomes even more severe in local hotspots, where many 
objects converge or diverge. 

https://orcid.org/0009-0006-6941-9098
https://orcid.org/0009-0006-6399-0613
https://orcid.org/0000-0002-9736-4454
https://orcid.org/0009-0001-5385-1453
https://orcid.org/0000-0002-3152-2587
https://orcid.org/0000-0003-4499-6420
https://doi.org/10.1145/3706598.3714300
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://creativecommons.org/licenses/by-nd/4.0
https://doi.org/10.1145/3706598.3714300
mailto:tarolancy@gmail.com
mailto:xinhuan.shu@gmail.com
mailto:yczddgj@126.com
mailto:liduan429@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706598.3714300&domain=pdf&date_stamp=2025-04-25


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 
M

ig
ra

tio
n 

(a) (b) (c) (d)

Start / end position of bird migration trajectory 

b2 

b1 
b3 

b2b1 b3 

Sea Land 

Land 

Strait 

Converge Diverge 

Local hotspot 

(a) Trajectory data (b) Focus+context grouping (c) Vector-field-based method (d) RouteFlow 

Fig. 1. A comparison of three animated transition methods on a bird migration example. 

To address these challenges, our animation design utilizes a real-
world bus route analogy: groups of passengers board the same bus 
at different stops, travel together along the shared routes, and disem-
bark at designated stops. We regard objects as passengers traveling 
together, with local hotspots representing various bus stops. Based 
on this, we animate objects following the shared paths, converging 
or diverging at local hotspots. As such, users can observe the global 
trend and identify local hotspots, similar to observing overall bus 
routes and identifying frequently visited stops. In this analogy, we 
regard 1) achieving a balance between the global trend and local 
hotspots as planning bus routes for efficiency and effectiveness. 
These bus routes should not only be of minimal length but also 
meet passengers’ travel demands. Besides, we consider 2) reducing 
occlusion by allocating passengers to respective seats in the process. 
Consequently, we formulate the problem of designing animated 
transitions for trajectory data as a sequential optimization of two 
sub-problems: bus routing and seat allocation. 

Based on this formulation, we propose RouteFlow, a trajectory-
aware animated transition method comprising two steps: trajectory-
driven path generation and object layout generation. As shown in 
Fig. 1(d), we create “bundled” animation paths for groups of objects 
that share similar movement trajectories. These animation paths 
are generated by a bottom-up hierarchical edge bundling algorithm, 
which progressively bundles similar trajectories, level by level, ef-
fectively capturing both the global trend and local hotspots. To 
minimize occlusion, we apply an incremental circle packing algo-
rithm, sequentially generating the layout at each local hotspot. The 
animation is then rendered using an interpolation-based method. 

We evaluate RouteFlow through a quantitative experiment on 
real-world data and a controlled user study. The results indicate 
that compared with the state-of-the-art methods, RouteFlow better 
facilitates identifying the global trend and locating local hotspots 

while performing comparably in tracking objects’ movements. The 
main contributions of our work include: 

• A formulation of designing animated transitions as a sequen-
tial optimization of bus routing and seat allocation problems. 

• RouteFlow, a trajectory-aware animated transition 
method that consists of a bottom-up hierarchical edge 
bundling algorithm and an incremental circle packing 
algorithm. The open-source implementation is available 
at https://github.com/Trajectory-Anim/Trajectory-Aware-
Animated-Transitions. 

• A quantitative experiment and a user study evaluating per-
formance on tracking objects’ movements, identifying the 
global trend, and locating local hotspots. 

2 Related Work 
There are two main tasks for animated transitions: tracking ob-
jects’ movements and identifying the trend. Most existing ef-
forts focus on tracking objects’ movements from temporal and 
spatial perspectives. The temporal perspective includes adjustments 
such as refining movement speed [15], staging [24, 26, 55], and stag-
gering [13]. The spatial perspective focuses on the animation paths 
of objects [17, 26, 49, 50]. Our work falls into the latter perspective. 

Animation paths play a crucial role in tracking objects’ move-
ments [18, 37]. According to Heer and Robertson [26], simple tra-
jectories are effective in minimizing confusion and enhancing pre-
dictability, thereby making it easier for users to track objects’ move-
ments. A direct method to achieve simplicity is to use straight lines 
connecting the start and end positions of the movement [11]. To 
provide more natural and engaging movements while maintaining 
simplicity, later research used smooth curves, such as arcs [16, 50] 
and B-splines [6]. Building on these advancements, Du et al. [17] 

https://github.com/Trajectory-Anim/Trajectory-Aware-Animated-Transitions
https://github.com/Trajectory-Anim/Trajectory-Aware-Animated-Transitions


RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

   Travel 
together Disembark 

Gather and board Converge

    Move 
together 

Diverge

(a) (b)

A1 

A2 

A3 

B3 

B1 

B2 

(a) Passengers gather and board the bus, travel together, and disembark (b) Objects converge, move together, and diverge 

Fig. 2. Illustration of our analogy. 

explored bundling animation paths to coordinate group movements, 
which improved group tracking but could introduce the occlusion 
issue. To address this, Wang et al. [49] utilized vector fields to 
coordinate movements for each group and separated the anima-
tion paths mutually to reduce occlusion among them (Fig. 1(c)). 
However, this separation can cause much deviation from the in-
put trajectories. In contrast, RouteFlow creates bundled animation 
paths for objects with similar trajectories and reduces occlusion by 
applying non-overlapping constraints on the object layout. 

In addition to tracking objects, animated transitions are widely 
used to identify the global trend [40]. Empirical studies have dis-
cussed the potential of careful animation designs for trend identifi-
cation [4, 9]. Recently, Zheng et al. [55] proposed the focus+context 
grouping method for animated transition to simultaneously track 
objects and identify the global trend. This method grouped objects 
with similar trends together and animated these groups sequentially 
(Fig. 1(b)). It simplifies complex animated transitions by dividing 
them into a sequence of simpler groups, facilitating easier track-
ing of objects while also revealing the global trend. However, this 
method groups transitions solely based on the start and end posi-
tions of the objects, ignoring their trajectories. As a result, it may 
fail to capture important patterns throughout trajectories, e.g., the 
local hotspots where objects converge or diverge. To overcome 
this limitation, RouteFlow considers the movement trajectories of 
objects, aiming to balance both the global trend and local hotspots. 

3 Problem Formulation 
In this section, we introduce the problem formulation, including the 
bus route analogy and two sub-problems derived from this analogy. 

3.1 The Bus Route Analogy 
We illustrate the objects’ movements in animation using the real-
world bus route analogy, where passengers travel along different 
bus routes to reach their destinations. As shown in Fig. 2(a), pas-
sengers gather at bus stops and board the same bus (A1). They then 
travel together along shared routes (A2). Eventually, they disembark 
at designated stops when approaching their destinations or trans-
ferring to other routes (A3). As such, we apply this analogy to guide 
the design of our animation. As shown in Fig. 2(b), groups of objects 
with similar movement trajectories converge at local hotspots (B1), 
analogous to bus stops, and then move together along the shared 
animation paths (B2), much like passengers on the same bus. As 

the animation progresses, these objects may diverge to reach their 
destinations separately (B3). 

Based on this analogy, we design our animation, RouteFlow, 
to capture both the global trend and local hotspots. By grouping 
objects with similar trajectories and moving them along shared 
animation paths, we reveal the global trend, just as the bus routes 
that passengers travel along. Meanwhile, objects converge or di-
verge at specific local hotspots, similar to passengers boarding 
and disembarking at bus stops. This allows us to simplify complex 
and cluttered trajectories in animation while ensuring that critical 
convergence and divergence points are preserved. 

Our animation leverages the Gestalt principles of Common Fate 
and Proximity [45, 47] to shape the perception of grouping. The 
Common Fate principle states that visual elements moving together 
are perceived as a group [9]. Accordingly, objects moving together 
along the same animation path are interpreted as a cohesive group. 
The Proximity principle states that visual elements close to one 
another are perceived as part of the same group [47]. In this case, 
we position objects with similar trajectories in close proximity, 
simulating passengers on the same bus. 

To create the animation, we should generate the animation paths 
in a way that is similar to planning bus routes. Furthermore, since 
multiple objects often move simultaneously along the same anima-
tion path, we should minimize occlusion in animation, ensuring 
that each object has its own position, like passengers having indi-
vidual seats on a bus. In this process, the seat allocation depends on 
the bus routes, as the bus routes determine which passengers are 
on the bus and where they board and disembark. This dependency 
naturally lends itself to sequential optimization [2]. In sequential 
optimization, the overall problem is decomposed into smaller, man-
ageable sub-problems that are solved in sequence. The solution 
to each sub-problem then informs and serves as the input for the 
subsequent one, ensuring a cohesive and efficient resolution of the 
entire problem. Accordingly, we decompose the problem into two 
sub-problems: trajectory-driven path generation (bus routing) and 
object layout generation (seat allocation). Next, we detail these two 
sub-problems and their respective optimization goals. 

3.2 Trajectory-Driven Path Generation 
In the context of the bus routing problem, there are two main opti-
mization goals: efficiency and effectiveness [31]. Efficiency involves 
minimizing operational costs, such as reducing the total length 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

Object layout generationTrajectory-driven path generation 

(a) (b) (c)

Local hotspot 

Start End PackingGlobal trendConverge Diverge 

Level-1 Level-2 

(a) Trajectory data (b) Bottom-up hierarchical edge bundling algorithm (c) Incremental circle packing algorithm 

Fig. 3. The pipeline of our method. 

of the bus routes. One of the most effective strategies is route ag-
gregation. This strategy encourages passengers to share the same 
route as much as possible during their journeys. The key is to iden-
tify groups of passengers with similar trajectories and then design 
routes that accommodate these shared trajectories. Likewise, in 
animation, we should group objects with similar trajectories and 
share their animation paths to reduce the total path length. This 
consolidates similar movements, allowing users to easily perceive 
the global trend in animation. However, overemphasizing efficiency 
can lead to excessive route aggregation, forcing some passengers to 
deviate far from their intended trajectories and causing significant 
detours. On the other hand, effectiveness focuses on meeting passen-
gers’ travel demands by ensuring they can successfully reach their 
destination without excessive detours. This requires minimizing 
the deviation between the aggregated route and each passenger’s 
intended trajectory. One solution is to set up proper bus stops in 
high-demand locations to satisfy more passengers’ demands. In 
animation, the resulting animation paths should align closely with 
the input trajectories of the objects and thus better reveal critical 
local hotspots where objects converge or diverge. 

As such, we derive two primary optimization goals for trajectory-
driven path generation: 

• Minimize the total animation path length by aggre-
gating animation paths for groups of objects with similar 
trajectories. 

• Minimize the deviation from the input trajectories by 
constraining the distance between the input trajectories to 
their aggregated paths. 

3.3 Object Layout Generation 
There are two main optimization goals when allocating seats: max-
imize capacity and avoid overcrowding. The first optimization goal 
is to maximize capacity. Similar to buses efficiently filling seats, the 
object layout should be designed to reduce empty space to enhance 
compactness. To achieve this, we strive to position similar objects 
close together to reduce gaps between them. This not only opti-
mizes space utilization but also fosters a sense of group cohesion 
among closely placed objects, aligning with the Proximity principle. 
The second optimization goal is to avoid overcrowding, which can 
be addressed through three strategies. First, when passengers are on 
the same bus, each should have their own seat to avoid interfering 

with others. Second, co-travelers who board or disembark together 
should sit close to maintain group cohesion and avoid mixing with 
the crowd. Third, passengers who disembark first should sit closest 
to the exit (the principle of “first out, closest to the exit”), facilitating 
a smoother queueing process and mitigating potential overcrowd-
ing during disembarkation. Correspondingly, in our animation: 1) 
objects moving along the same path should remain visible and not 
overlap; 2) objects that converge or diverge together should be 
grouped closely to avoid mixing with other groups; and 3) objects 
should be placed based on their disembarking order and positions. 
Based on the analysis above, this problem involves two primary 
optimization goals: 

• Maximizing compactness by reducing empty space in the 
layout. 

• Minimizing occlusion by 1) applying the non-overlapping 
constraint within a group of objects moving together, 2) 
keeping objects that converge or diverge together as a group, 
and 3) following the principle of “first out, closest to the exit.” 

4 Method 
Fig. 3 shows the pipeline of our method. Given trajectory data as 
input, it consists of two modules: trajectory-driven path genera-
tion and object layout generation. 

4.1 Trajectory-Driven Path Generation 
An edge bundling algorithm can effectively minimize both the total 
path length and the deviation from the input trajectories in generat-
ing the animation paths. However, aggregating all the trajectories 
simultaneously presents two issues. First, it fails to identify local 
hotspots at multiple levels of granularity, which are pervasive in 
real-world applications [35]. Second, the real-time animated tran-
sitions require high scalability of the algorithm. To address these 
issues, we develop a bottom-up hierarchical edge bundling algo-
rithm that progressively bundles similar trajectories, level by level. 
As shown in Fig 3(b), it captures local hotspots across multiple 
levels of granularity while revealing the global trend. At each level, 
we adopt a force-directed strategy [27, 42] to bundle the edges. The 
core of our algorithm lies in the design of the forces that drive the 
bundling process, along with a bottom-up bundling that progres-
sively bundles trajectories. 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Input trajectory 

Current trajectory 
Anchor force 

Spring force Attraction force 

Control point 

Fig. 4. Illustration of three types of forces in our algorithm. 

4.1.1 Force Design. Existing force-directed edge bundling algo-
rithms model trajectories as a series of control points and apply 
forces to adjust their positions [27, 42]. They typically adopt two 
types of forces: attraction force and spring force. However, they 
often fail to preserve local hotspots because these forces ignore the 
original positions of these input trajectories. To address this issue, 
we introduce a new force, the anchor force, to reduce deviation 
from the input trajectories. Fig. 4 illustrates how our algorithm 
incorporates these three types of forces. Given the trajectory set 
𝑆 and a pair of trajectories 𝑢 and 𝑣 , the three types of forces are 
defined as follows: 

• Attraction force (𝐹𝑎𝑡𝑡 ) is applied between control points 
on different trajectories to draw them closer together. This 
force bundles similar trajectories. According to Selassie et 
al. [42], 𝐹𝑎𝑡𝑡 is defined as: 

𝐹𝑎𝑡𝑡 (𝑢𝑖 , 𝑣 𝑗 ) = 
𝜂 (𝑣 𝑗 − 𝑢𝑖 ) 

𝐶𝑣 (𝜂2 + | |𝑢𝑖 − 𝑣 𝑗 | | 2)2
, (1) 

where 𝑢𝑖 and 𝑣 𝑗 represent the 𝑖-th and 𝑗 -th control points on 
these trajectories, and | |𝑢𝑖 − 𝑣 𝑗 | | denotes the Euclidean dis-
tance between them. The weighting parameter 𝜂 controls the 
rate at which the force diminishes with increasing distance. 
A larger 𝜂 causes 𝐹𝑎𝑡 𝑡 to decrease slower, thereby extending 
its influence range. 𝐶𝑣 denotes the number of control points 
on trajectory 𝑣 . 

• Spring force (𝐹𝑠𝑝𝑟 ) is applied between adjacent control 
points on the same trajectory. This force promotes uniform 
distribution of control points along the trajectory and avoids 
highly curved trajectories. According to Holten et al. [27], 

𝐹𝑠𝑝𝑟 is defined as: 

𝐹𝑠𝑝𝑟 (𝑢𝑖 ) = 𝐶𝑢 (𝑢𝑖 +1 + 𝑢𝑖 −1 − 2𝑢𝑖 ), (2) 

where 𝐶𝑢 is the number of control points on trajectory 𝑢. 
• Anchor force (𝐹𝑎𝑛𝑐 ) is applied to each control point, pulling 
it back toward its position in the input trajectories. This force 
prevents the current trajectories from deviating too far from 
the input trajectories. 𝐹𝑎𝑛𝑐 is defined as: 

𝐹𝑎𝑛𝑐 (𝑢𝑖 ) = | |𝑢 ′ 𝑖 − 𝑢𝑖 | | 
2 · 

𝑢 ′ 
𝑖 − 𝑢𝑖 

| |𝑢 ′ 
𝑖 − 𝑢𝑖 | | 

, (3) 

where 𝑢 ′ 
𝑖 denotes the original position of 𝑢𝑖 , and 

𝑢′ 𝑖−𝑢𝑖 
| |𝑢′ 

𝑖 −𝑢𝑖 | | 
is 

a unit vector indicating the direction of the force.
Based on the above force analysis, the resultant force on the 𝑖-th 

control point of trajectory 𝑢 is calculated as: 

𝐹 (𝑢𝑖 ) = ( 
∑︁ 

𝑣 ∈Γ𝑢 

𝐶𝑣∑︁ 

𝑗 =1 

𝐹𝑎𝑡𝑡 (𝑢𝑖 , 𝑣 𝑗 )) + 𝛼 𝐹𝑠𝑝𝑟 (𝑢𝑖 ) + 𝛽 𝐹𝑎𝑛𝑐 (𝑢𝑖 ) . (4) 

Here, Γ𝑢 denotes the set of top-𝑘 similar trajectories of 𝑢. The 
parameters 𝛼 and 𝛽 balance the three types of forces. In our imple-
mentation, they are determined as 5 and 1 through a grid search. 

4.1.2 Bottom-Up Hierarchical Edge Bundling. Progressively 
bundling similar trajectories at each level of granularity involves 
two key aspects. The first is how to select the most similar 
trajectories to consider when applying forces at each level. Existing 
edge bundling algorithms assess edge similarities through compati-
bility metrics, which consider factors such as topology [42] and 
importance [39] but often fail to capture trajectory similarities. To 
better capture trajectory similarities, we design our compatibility 
metric based on dynamic time warping (DTW) [36], a widely 
accepted metric for assessing trajectory similarity [54]. DTW 
calculates the distance between two trajectories by finding the 
optimal alignment between points on them, thereby capturing 
the overall similarity between the entire trajectories [36]. Given 
two trajectories (𝑢, 𝑣 ) and their DTW distance (DTW(𝑢, 𝑣)), the 
compatibility between 𝑢 and 𝑣 is defined as: 

compatibility(𝑢, 𝑣) = 1 − norm(DTW(𝑢, 𝑣 )), (5) 

where norm(·) denotes the min-max normalization to scale the 
distance into the range [0,1]. To reduce computational complexity, 
we only consider the top-𝑘 similar trajectories according to the 

(a)Bundled portionStart End 

Local hotspot 

Converge Diverge 

(a) (b) (c)(a) Trajectory data (b) Level-1 (c) Level-2 

Fig. 5. Illustration of our bottom-up hierarchical edge bundling algorithm. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

B: Keep objects that 
converge or diverge 
together as a group 

C: Follow the principle of 
“first out, closest to the exit” 

Reduce empty space 
Apply non-overlapping 

constraint 
A: 

Fig. 6. Illustration of the goals in our object layout generation. 

compatibility metrics. In our implementation, 𝑘 is a user-specified 
parameter that is set as five by default. 

The second is how to hierarchically bundle these trajectories. At 
each level, similar trajectories are bundled, revealing local hotspots 
where they converge and diverge. To identify local hotspots across 
multiple levels of granularity, it is crucial to preserve the conver-
gence and divergence identified at lower levels. Therefore, we deter-
mine the bundled portions of trajectories at each level by measuring 
the distances between control points, as shown in Fig. 5. Each bun-
dled portion will be merged into a single trajectory, which serves as 
input for the next level, where they are further bundled. Through-
out this process, the identified local hotspots remain unchanged, 
as they are excluded from the bundled portions and unaffected by 
further bundling. At each level, the three types of forces are applied. 
When moving to the next level, the attraction force is increased 
tenfold to adapt to the sparser distribution of trajectories. 

To evaluate the effectiveness of our algorithm, we compare it 
with two representative edge bundling algorithms, divided edge 
bundling (DEB) [42] and multilevel agglomerative edge bundling 
(MAEB) [22]. We assess these methods based on their efficiency in 
reducing total path length and deviation from the original paths. 
The results show that our algorithm achieves the lowest deviation 
and performs comparably with the baseline algorithms in terms of 
ink ratio. Details can be found in Appendix A. 

4.2 Object Layout Generation 
The optimization goals described in Sec. 3.3 are achieved in 
three ways. First, to reduce the empty space and satisfy the non-
overlapping constraint for a group of objects (Fig. 6A), we use a 
circle packing algorithm [51] to generate the object layout. Second, 
to keep objects that converge or diverge together as a group (Fig. 6B), 
an incremental circle packing algorithm is developed. Third, to fol-
low the principle of “first out, closest to the exit"(Fig. 6C), we place 
objects based on their disembarking order and positions. 

Just as passengers only adjust their seats when boarding or dis-
embarking along the bus route, we update the layout incrementally 
only at the local hotspots. To achieve this, we first determine the 
order of local hotspots for layout generation by constructing a 
directed acyclic graph (DAG, Fig. 7(a)) and then incrementally gen-
erate the layout at each local hotspot (Fig. 7(b)). In the DAG, nodes 
represent local hotspots, and directed edges indicate the movements 
of objects between these local hotspots. We perform a reverse topo-
logical sort on the graph to generate the order of local hotspots. 
Then, we incrementally generate the layout at local hotspots accord-
ing to their order. The basic idea of generating the layout at each 
local hotspot is to generate a layout for each newly arriving group 
and then pack these new layouts with those of previous groups. As 
shown in Fig. 7, when packing the objects at a given local hotspot 
A, they are placed to preserve their relative positions. This prevents 
occlusion during disembarking. Inspired by Görtler et al. [23], we 
adopt a force-directed algorithm and apply two types of attraction 
forces (Fig. 7(b)). The first force moves all objects/groups toward 
the current local hotspot, while the second attracts neighboring ob-
jects/groups together. To avoid occlusion, we model objects/groups 
as rigid bodies and use the Box2D engine [7] for implementation. 

4.3 Implementation 
After generating the animation paths and object layout at all the 
local hotspots, we use an interpolation-based method to render 
smooth animations. This method synchronizes the movements 
based on the timing of the local hotspots and the objects’ start and 
end points. To simplify, we refer to these collectively as “point.” We 
ensure that 1) groups of objects that converge or diverge together 

(a)

A 

B 

Node Edge 

Attraction force 

Between entities Towards local hotspots 
A1 A2 A3 

B1 B2 B3 

(b)(a) Build a DAG to determine the order of local hotspots (b) Generate the layout at each local hotspot 

Fig. 7. Illustration of our incremental circle packing algorithm. 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

t = 0 t = 1 t = 2 t = 3 

Scan line 

Fig. 8. Illustration of the scan line moving through all the 
local hotspots and the objects’ start and end points. 

arrive at or leave the local hotspots at the same time and 2) exces-
sively fast speeds are avoided. As shown in Fig. 8, we use a scan 
line that moves through all points, assigning their timing as when 
they intersect with the scan line. The movement direction of the 
scan line is determined by the vector formed between the average 
start and end positions of all animation paths. However, paths that 
form a large angle with the scan line’s movement direction can 
result in excessively high speeds of objects. To address this, we 
iteratively adjust the timing of points until the maximum speed is 
less than twice the minimum speed. If we detect excessively high 
speed between two connected points, we adjust the timing by either 
delaying the latter point or advancing the former at random. We 
interpolate between points to render the animation after complet-
ing the iterative adjustment. To further enhance smoothness, we 
apply the slow-in, slow-out technique [15]. 

5 Evaluation 
To demonstrate the effectiveness of RouteFlow, we conducted a 
quantitative experiment and a user study. 

5.1 Quantitative Evaluation 
Datasets. The quantitative evaluation was conducted on seven 
datasets from real-world applications: Taxi [52, 53], BirdMap [29], 
Railway [25], MEIBook [8], OpenSkyAirline [38], US Migration [27], 
DanishAIS [3]. These datasets were collected from three common 
areas in trajectory data analysis, including transportation, sociology, 
and ecology. We preprocessed the raw data through several steps, 

including noise filtering, trajectory compression, and merging of 
redundant trajectories. 
Baseline methods. We selected two state-of-the-art animated tran-
sition methods for comparison. The first method, the focus+context 
grouping method, simultaneously facilitates tracking objects’ move-
ments and identifying the global trend by breaking down transitions 
into groups [55]. We used the default parameters reported in the 
paper. The second method, the vector-field-based method, is the 
state-of-the-art method in terms of tracking objects’ movements by 
utilizing vector fields to generate smooth, non-linear paths [49]. As 
the original paper did not provide specific parameter settings, we 
performed a grid search to find the optimal parameters. Moreover, 
since the vector-field-based method requires predefined groups, we 
used the grouping results from the focus+context grouping method 
for consistency. 
Evaluation criteria. Previous studies classified the metrics into 
three types: occlusion, deformation, and dispersion [13, 15, 17, 49]. 
We adopted the metrics summarized by Wang et al. [49] as they 
are tailored for objects with groups. 

We denote all the frames in the animation as𝑇 , a particular frame 
as 𝑡 , and all the objects as 𝑃 . 

Occlusion measures the overlap between objects. This metric is 
useful for evaluating the capability of an animation in facilitating 
the tracking of objects’ movements. High occlusion reduces the 
visibility and distinguishability of moving objects, making these 
objects harder to distinguish and track [13, 15]. 

Specifically, overall occlusion (occlusion𝑜 ) measures the overlap 
between all objects during the entire animation. 

occlusion𝑜 (𝑇 ) = 
1 
|𝑇 | 

∑︁ 

𝑡 ∈𝑇 

 
𝑝,𝑞 ∈𝑃 ,𝑝 ≠𝑞 overlap(𝑝, 𝑞, 𝑡 ) 

|𝑃 | ( |𝑃 | − 1) , 

where overlap(𝑝, 𝑞, 𝑡 ) is an indicator function with value 1 if objects 
𝑝 and 𝑞 overlap at frame 𝑡 , and 0 otherwise. 

Within-group occlusion (occlusion𝑤 ) measures the overlap be-
tween objects in the same group. 

occlusion𝑤 (𝑇 ) = 
1 
𝐾 

𝐾∑︁ 

𝑖 =1 

1 
|𝑇𝐺𝑖 | 

∑︁ 

𝑡 ∈𝑇𝐺𝑖 

 
𝑝,𝑞 ∈𝐺𝑖 ,𝑝 ≠𝑞 overlap(𝑝, 𝑞, 𝑡 ) 

|𝐺𝑖 | ( |𝐺𝑖 | − 1) , 

where 𝐾 is the number of groups, 𝐺𝑖 is the set of objects in the 𝑖-th 
group, and 𝑇𝐺𝑖 is the frames of the group 𝐺𝑖 . 

Table 1: Comparison between different methods, including the focus+context grouping method (F+C), the vector-field-based 
method (VF), and RouteFlow. For all four metrics, lower values are better. 

Dataset Overall occlusion Within-group occlusion Deformation Dispersion 

F+C VF RouteFlow F+C VF RouteFlow F+C VF RouteFlow F+C VF RouteFlow 

Taxi [52, 53] 0.00123 0.00180 0.00048 0.01963 0.00626 0.00606 0.00081 0.00107 0.00062 0.05948 0.06766 0.02606 
BirdMap [29] 0.00277 0.00958 0.00213 0.02773 0.02607 0.00904 0.00152 0.00160 0.00064 0.13762 0.12494 0.03258 
Railway [25] 0.00229 0.01351 0.00142 0.11960 0.10420 0.02875 0.00128 0.00140 0.00063 0.10629 0.10950 0.03090 
MEIBook [8] 0.00132 0.00566 0.00066 0.01362 0.01196 0.00675 0.00079 0.00105 0.00064 0.06699 0.06817 0.02430 

OpenSkyAirline [38] 0.00076 0.00394 0.00055 0.01934 0.01814 0.00571 0.00082 0.00117 0.00061 0.08047 0.08216 0.03007 
US Migration [27] 0.00115 0.00408 0.00072 0.01107 0.01027 0.00295 0.00097 0.00147 0.00066 0.13015 0.13345 0.03802 
DanishAIS [3] 0.00047 0.00120 0.00012 0.01435 0.00460 0.00266 0.00122 0.00089 0.00087 0.11688 0.12816 0.08611 

Average 0.00148 0.00561 0.00088 0.03097 0.02469 0.00842 0.00122 0.00141 0.00065 0.10627 0.10858 0.03727 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

Deformation measures the changes in distance between objects 
within the same group across consecutive time frames. Lower defor-
mation indicates that the relative object positions within the group 
remain stable, making it easier to track the objects of interest. 

deformation(𝑇 ) = 

1 
𝐾 

𝐾∑︁ 

𝑖 =1 

1 
|𝑇𝐺𝑖 | 

∑︁ 

𝑡 ∈𝑇𝐺𝑖 ,𝑡 >0 

 
𝑝,𝑞 ∈𝐺 ,𝑝 ≠𝑞 |dist(𝑝, 𝑞, 𝑡 ) − dist(𝑝, 𝑞, 𝑡 − 1) | 

|𝐺𝑖 | ( |𝐺𝑖 | − 1) . 

𝑑𝑖𝑠𝑡 (𝑝, 𝑞, 𝑡 ) is the distance between objects 𝑝 and 𝑞 at frame 𝑡 . 
Dispersion measures how spread out objects in the same group 

are. Lower dispersion indicates that the members of a group are 
moving more closely together, enhancing the perception of the 
group as a whole. This facilitates more effective tracking of the 
group’s collective movements, thereby enhancing the identification 
of the global trend. 

dispersion(𝑇 ) = 
1 
𝐾 

𝐾∑︁ 

𝑖 =1 

1 
|𝑇𝐺𝑖 | 

∑︁ 

𝑡 ∈𝑇𝐺𝑖 

 
𝑝,𝑞 ∈𝐺𝑖 ,𝑝≠𝑞 dist(𝑝, 𝑞, 𝑡 ) 

|𝐺𝑖 | ( |𝐺𝑖 | − 1) . 

The aforementioned three metrics focus on tracking objects’ 
movements and identifying the global trend. To the best of our 

knowledge, there is no existing metric that adequately measures the 
preservation of local hotspots in animation. Additionally, the em-
ployed real-world datasets lack ground truth for local hotspots. As 
a result, we supplement the evaluation of preserving local hotspots 
with a user study using several synthetic datasets, which is de-
scribed in Sec. 5.2. 
Results. Table 1 presents the comparison results between Route-
Flow and the baseline methods. RouteFlow performs the best on all 
datasets and all metrics. 

Occlusion. RouteFlow achieves lower overall occlusion and 
within-group occlusion scores compared to the two baseline meth-
ods. This improvement is mainly due to differences in object layout. 
The baseline methods do not explicitly optimize the overlaps within 
groups (Fig. 9A and Fig. 9B), and in particular, the vector-field-based 
method may even introduce overlaps between groups as it moves 
all objects simultaneously. In contrast, our incremental circle pack-
ing algorithm reduces overlaps by employing three strategies: 1) 
applying a non-overlap constraint to minimize occlusion between 
objects (Fig. 9C), 2) keeping objects that converge or diverge to-
gether as a group (Fig. 9D), and 3) following the principle of “first 
out, closest to the exit” (Fig. 9E). 

Deformation. Compared to the two baseline methods, Route-
Flow exhibits the least deformation. The focus+context grouping 

Within-group occlusion=0.00588 

Dispersion=0.15701 

Overall occlusion=0.00124 

Deformation=0.00745 
Within-group occlusion=0.00426 

Dispersion=0.12942 

Overall occlusion=0.00090 

Deformation=0.00554 
Within-group occlusion=0.00000 
Overall occlusion=0.00000 

Dispersion=0.09662 
Deformation=0.00332 

(a) (b) (c)

B 

F H 

C 

vs. vs. 

G 

Moving 
direction 

E 

D 

Object 

Overlap 

Distribution 

Path 

Disembarking 
position 

Irregular 
paths 

Regular 
but dispersed 

paths 

Regular 
and cohesive 

paths 

Many objects 
are occluded 

None of objects 
are occluded 

A 

First out, 
closet to the exit 

(a) Focus+context grouping (b) Vector-field-based method (c) RouteFlow 

Fig. 9. Object positions at a specific frame in the animations generated by three methods on the BirdMap dataset. Here, overlaps 
are highlighted as red strokes, and the distributions of objects are shown as blue contours. The metric values for these frames 
are displayed below each sub-figure. The detailed analysis of these values is provided in Appendix B. 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Table 2: The result of running time on different modules. 

Dataset Attribute Time cost (second) 

Size Trajectory-driven path generation Object layout generation Total 

Taxi [52, 53] 73 0.06 0.03 0.09 
BirdMap [29] 109 0.10 0.06 0.16 
Railway [25] 129 0.11 0.06 0.17 
MEIBook [8] 174 0.11 0.10 0.21 

OpenSkyAirline [38] 187 0.14 0.11 0.25 
US Migration [27] 258 0.23 0.22 0.45 
DanishAIS [3] 316 0.46 0.37 0.83 

method changes the layout of every frame as objects follow their 
input trajectories. Similarly, the vector-field-based method causes 
unsynchronized movements due to varying velocity vectors among 
objects at different positions, leading to layout changes in subse-
quent frames. Conversely, RouteFlow incrementally updates the 
layout only at local hotspots, with the aim of balancing readability 
and stability in these refinements. This balance greatly reduces 
deformation during animated transitions. 

Dispersion. RouteFlow achieves lower dispersion compared to 
the other methods. The focus+context grouping method, which 
groups objects based solely on their start and end positions, records 
the highest dispersion. This method might group objects with dif-
ferent trajectories together due to their similar start and end posi-
tions, increasing dispersion (Fig. 9F). The vector-field-based method, 
which generates the animation paths of objects using a vector field, 
tends to disperse the input trajectories (Fig. 9G), leading to a less 
compact layout (Fig. 9H) and high dispersion. In contrast, our incre-
mental circle packing algorithm keeps the objects compact (Fig. 9C), 
resulting in lower dispersion. 
Running Time. Table 2 shows the average running times for each 
module of our animation method on real-world datasets, where 
object sizes vary from 73 to 316. The performance tests were con-
ducted on a Windows PC with an Intel i9-13900K CPU. We averaged 
results over five trials to minimize randomness. The average run-
ning time per dataset is within 1 second, which is fast enough for 
designing animated transitions. The object layout generation mod-
ule is the most time-consuming because it requires incremental 
generation for the layout of each local hotspot. In contrast, the 
trajectory-driven path generation module is less demanding and 
achieves stable results in 300 iterations. 

5.2 User Study 
We conducted a user study to evaluate how effectively people use 
RouteFlow to track objects’ movements and identify the global trend 
and local hotspots. We formulated three hypotheses: participants 
perform more accurately with RouteFlow in tracking objects’ move-
ments (H1), identifying the global trend (H2), and locating local 
hotspots (H3) compared to two baseline methods, the focus+context 
grouping method and the vector-field-based method. 

5.2.1 Study Setup. 
Participants. We recruited 15 participants (12 males and 3 females, 
denoted as P1-P15) from local universities. They were graduate 
students majoring in computer science (12) and information design 
(3), aged from 22 to 32 years (mean = 24.47, SD = 2.53). All of 
them reported to have normal vision and no color deficiencies. 
Upon completion, each participant received a $30 compensation, 
independent of their performance. 
Apparatus. The user study was conducted on a personal computer 
equipped with a 27-inch display with a resolution of 3840 × 2160 
pixels and a 60 Hz refresh rate. Objects were presented as circles 
with a radius of 9 pixels (0.20 cm), filled in black color, following the 
previous practice [17, 49]. The animation window measured 1250 × 
1250 pixels (27.0 × 27.0 cm) with a white background. Participants 
were seated at a distance of 40 cm from the display. 
Datasets. We used synthetic data for a controlled study setting in-
stead of real-world data, which may lack ground truth for the global 
trend and local hotspots. This follows the common practice [17, 49]. 
Fig. 10 shows our dataset generation process, involving three steps. 
First, we generated a smooth global trend trajectory using B-splines. 
Next, we determined local hotspots by sampling points along the 

(a) (b) (c)

Start/End B-spline control point Converge DivergeGlobal trend Trajectories 

Local hotspot 

(a) Generate the global trend (b) Determine local hotspots (c) Create trajectories 

Fig. 10. The data generation pipeline. 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

global trajectory and randomly classifying them as converging 
or diverging points. Finally, we created trajectories for objects by 
adding random perturbations to the global trend, avoiding overlap 
between start and end positions. To achieve better diversity and a 
certain level of complexity, we finalized our design through several 
iterations. In the final iteration, there were two types of global 
trend (one or two bends in the B-spline), and three types of local 
hotspot assignment (1 convergence + 1 divergence, 2 convergences 
+ 1 divergence, and 1 convergence + 2 divergences). Each dataset in-
cluded 30 trajectories. To control the experiment duration and keep 
participants focused, we generated datasets for each combination 
of trend type and local hotspot type and conducted two repetitions 
per combination, resulting in 12 datasets (2 types of the global trend 
× 3 types of local hotspot assignment × 2 repetitions). 
Task design. Our study consisted of three tasks, each iterated and 
refined through small-scale pilot studies. For each task, participants 
were asked questions with four options (one correct, three incorrect) 
along with an additional option for “I am not sure.” 

T1—Tracking objects’ movements: Participants were required to 
track the movement of target objects to identify their end positions, 
and then select one answer from five options. This task design re-
ferred to the previous practices [17, 49]. We set the number of target 
objects to three, all from the same group, to simplify the task. We 
generated the incorrect options by randomly replacing the correct 
targets with their nearest neighbors based on their end positions. 

T2—Identifying the global trend: Participants were asked to ob-
serve the overall movement of all objects to identify the global 
trend, and then select one answer from five options. Initially, we set 
the background to be fully white, whereas feedback from the pilot 
study indicated difficulty in observing and locating the movements. 
To alleviate this issue, the background canvas was divided into 8 × 
8 grid, colored alternatively in white and grey. The three incorrect 
options were generated by adding random perturbations to the 
correct trend, ensuring that they passed through different grids to 
be distinguishable from the correct option. 

T3—Locating local hotspots: Participants were asked to identify 
the grids containing local hotspots. Similar to T2, to facilitate lo-
cating local hotspots, we employed a white and grey background 
canvas. Each answer option included two marked grids: one for 
convergence and one for divergence. Incorrect options were gen-
erated from the correct option by randomly replacing one correct 
grid with a neighboring grid. To simplify the task, participants 
were allowed to click and mark grids that might assist them while 
viewing the animation and refer to these marks when answering. 
Study protocol. Participants started by signing consent and watch-
ing a tutorial video about the study procedure and tasks. We then 
provided three brief videos, each explaining a different animation 
method. The study adopted a within-subjects design, requiring each 
participant to complete all three tasks using three different methods. 

For each task, we designed a practice session and a test session. 
The practice session familiarized participants with the interface 
and tasks, through six trials, two for each method. In each trial, 
participants initially saw all objects in grey points. Particularly, we 
highlighted the target objects in red for the tracking task. They 
then clicked to start the animation. All objects in the tracking task 
transitioned to grey and then to black within the first 0.5 seconds. In 
the other two tasks, the objects turned black directly. This allowed 

participants to recognize the target objects and prepare to follow 
their movements. After the animation, participants clicked to start 
the question and could not review the animation anymore. In the 
practice session, we provided correct answers to help participants 
check their understanding and encouraged them to ask questions. 

After completing the practice session and confirming that they 
fully understood the tasks and methods, participants advanced 
to the test session, which consisted of 36 trials (12 datasets × 3 
methods). Unlike the practice session, correct answers were no 
longer provided during the test session. To counterbalance the order 
of methods, we divided 15 participants into five groups, three for 
each group. Within each group, we used an expanded Latin square 
and applied a cyclic shift to the method order for each participant. 
Additionally, to alleviate the learning effect, we randomly mirrored 
and rotated the datasets. Participants were allowed to take short 
breaks after each task or whenever they requested one. 

In total, each participant finished 108 trials (3 tasks × 3 methods 
× 12 datasets), leading to 1,620 total trials (15 participants × 108 
trials). After finishing each task, we assessed participants’ workload 
and fatigue levels using NASA’s Task Load Index [41] and asked 
about their preferred methods and the reasons for their preferences. 
For all trials, we recorded participants’ answers and completion 
times. The entire study lasted 75-90 minutes. Additional study de-
tails are provided in Appendix C, and results are provided in the 
supplemental material. 

5.2.2 Result Analysis. We analyzed three types of data: the accu-
racy of multi-choice questions, participants’ subjective ratings for 
workload, and their stated preferences. 
Accuracy. For each task, we computed participants’ average accu-
racy across different methods. As data is not normally distributed, 
we conducted Friedman tests for each task, followed by Wilcoxon 
signed-rank tests with Bonferroni correction for pairwise compar-
isons of different methods. We report the statistical test results and 
the box plots in Fig. 11. The Friedman test results indicate signif-
icant differences among the methods in all three tasks: tracking 
objects’ movements (𝜒 2 (2) = 23.16, 𝑝 < 0.0001), identifying the 
global trend (𝜒 2 (2) = 9.59, 𝑝 = 0.00083), and locating local hotspots 
(𝜒 2 (2) = 20.33, 𝑝 < 0.0001). In the subsequent analysis, we focus 
on the pairwise comparisons. 

T1—Tracking objects’ movements: In pairwise comparisons, our 
RouteFlow method significantly outperforms the focus+context 
grouping method (average: 0.865 vs. 0.421, 𝑝 = 0.001). However, 
RouteFlow only shows a small difference compared to the vector-
field-based method in average accuracy (0.865 vs. 0.930), and the 
paired test indicates no significant difference (𝑝 = 0.275). Therefore, 
the results can partially support H1. Participants using the fo-
cus+context grouping method show a significantly lowest accuracy. 
This is because both our method and the vector-field-based method 
optimize the animation paths to reduce complexity, while the fo-
cus+context grouping method directly uses the input trajectories as 
its animation paths. Correspondingly, the majority of participants 
(10 out of 15) reported that the animation paths in the focus+context 
grouping method were more complex and had greater occlusion 
compared to the other two methods. This feedback aligns with our 
comparison results in Sec. 5.1, where the focus+context grouping 
method achieves the highest within-group occlusion. In addition, 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

RouteFlow The focus+context grouping method (F+C) The vector-field-based method (VF) 

(b) (c)

75th percentile 

Median 
25th percentile 

Maximum 

Minimum 

(a)

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 

0.8 

0.6 

0.4 

0.2 

RouteFlow F+C VF RouteFlow F+C VF RouteFlow F+C VF 

A
cc

ur
ac

y 

(a) T1 — tracking objects’ movements (b) T2 — identifying the global trend (c) T3 — locating local hotspots 

Fig. 11. User study results on three tasks. Here, * indicating p < 0.05, ** indicating p < 0.01. 

we asked participants about their different performances using 
RouteFlow and the vector-field-based method. P12 appreciated the 
grouping in RouteFlow for tracking, saying “The relative positions 
of objects are stable within the group. I can track one or two targets 
inside the group and use them as a reference to locate other targets.” 
However, we also received feedback expressing different opinions. 
For instance, P2 commented, “The objects in RouteFlow are grouped 
closely. I sometimes confuse the targets with other objects.” P2 pre-
ferred the vector-field-based method, noting “objects are relatively 
spread out. Even when occlusion occurs, it is easy to distinguish the 
targets by following their movements.” 

T2—Identifying the global trend: RouteFlow significantly outper-
forms the focus+context grouping method (𝑝 = 0.021) and the 
vector-field-based method (𝑝 = 0.028), thereby supporting H2. 
Participants described RouteFlow as having a sense of “unity” (P1, 
P2, P4, P10, and P11) and showing “a clear trend” (P1, P4, P5, P6, 
and P11). Besides, they explained their performances using the two 
baseline methods related to the dispersion. P2 complemented that 
“Although [the focus+context grouping method] depicts a clear trend 
of each group, it requires memorizing and comparing the movements 
of several groups to get the global trend, which brings extra burden.” 
P4 mentioned the vector-field-based method, saying “It is distract-
ing to follow the objects that are dispersed in different locations but 
move synchronously.” This feedback aligns with the quantitative 
result in Sec. 5.1, where these baseline methods showed higher 
dispersion compared to RouteFlow. Additionally, P1 commented 
that the animation design for groups of objects in RouteFlow can 
be a double-edged sword for capturing the global trend: “[It allows 
me] to infer the global trend based on groups’ movements. However, 
it may be disrupted due to the convergence and divergence [of the 
groups].” This further highlighted the importance of balancing the 
global trend and local hotspots. 

T3—Locating local hotspots: RouteFlow achieves an average accu-
racy of 0.832, which is significantly better than the focus+context 
grouping method (𝑝 = 0.002) and the vector-field-based method 
(𝑝 = 0.002). Therefore, the results can support H3. Participants 

described the convergence and divergence of objects in RouteFlow 
as “clearly noticeable” (P1, P2, P12, P13, and P15) and “apparent” 
(P6, P8, and P10). In contrast, the other two methods required 
extra cognitive effort. Five participants (P2, P6, P11, P12, and 
P15) complained that animating different groups separately in the 
focus+context grouping method made it difficult to distinguish the 
locations where objects converge or diverge. Although the vector-
field-based method animated all objects together, users still found it 
difficult to identify local hotspots. P11 commented from the spatial 
perspective, “Objects are dispersed. I cannot confidently tell the loca-
tions [of the local hotspots].” P2 noticed “Objects do not pass through 
their shared positions simultaneously.” This issue arises because, 
while the vector-field-based method animates objects concurrently, 
the local hotspot locations along their individual trajectories do 
not always align. Thus, participants noted temporal discrepancies 
in the animation as objects passed through these local hotspots. 
Workload. Fig. 12 summarizes participants’ workload and fatigue 
levels using NASA’s Task Load Index [41], including mental de-
mand, physical demand, temporal demand, effort, frustration, and 
performance. We conducted Friedman tests for each dimension in 
each task, followed by Wilcoxon signed-rank tests with Bonfer-
roni correction for pairwise comparison among different methods. 
The Friedman test results show significant differences among the 
methods across all six dimensions for each task, except the effort 
dimension for T2—Identifying the global trend. Next, we focus on 
analyzing the pairwise comparison results. 

T1—Tracking objects’ movements: The Wilcoxon signed-rank tests 
indicate that both RouteFlow and the vector-field-based method 
perform better than the focus+context grouping method on all six 
dimensions, whereas there are no significant differences between 
RouteFlow and the vector-field-based method. Further analysis of 
mean values and confidence intervals reveals a subtle difference: 
the vector-field-based method shows slightly lower mental and 
physical demands and effort than RouteFlow. This could be due to 
the relatively simpler animation paths for individual objects in this 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

Mental 

Physical 

Effort 

Temporal 

Frustration 

Performance 

2 4 6 
(a)

2 4 6 2 4 6 
(b) (c)

RouteFlow The focus+context grouping method The vector-field-based method 

(a) T1 — tracking objects’ movements (b) T2 — identifying the global trend (c) T3 — locating local hotspots 

Fig. 12. Participants’ workload and fatigue levels according to NASA’s Task Load Index. Here, error bars show the 95% confidence 
intervals. indicates that a smaller score is better, and vice versa. The results of pairwise Wilcoxon signed-rank tests are also 
shown, with * indicating p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001. 

method [49], which might require less cognitive load for tracking 
compared to the bundled paths in RouteFlow. 

T2—Identifying the global trend: The Wilcoxon signed-rank tests 
indicate that RouteFlow outperforms the focus+context grouping 
method in terms of mental demand, temporal demand, frustration, 
and performance dimensions. This is because the focus+context 
grouping method demands extra memory and analytical burden to 
synthesize the movements of multiple groups into the global trend, 
which often leads to frustration. 

T3—Locating local hotspots: The Wilcoxon signed-rank tests indi-
cate that RouteFlow outperforms the other two methods on the five 
dimensions, except for effort, where RouteFlow only outperforms 
the focus+context grouping method. These advantages align with 
participants’ accuracy in completing the task. Regarding the effort 
dimension, participants found the background grids during the 
animation helpful, as they reduced the effort needed to observe and 
locate movement. 
Preference. We also collected participants’ preferences for the 
three methods in three tasks, as summarized in Fig. 13. 

T1—Tracking objects’ movements: Participants’ opinions varied. 
Eight participants preferred RouteFlow, and seven preferred the 
vector-field-based method. This was slightly different from the 
overall subjective workload ratings, where participants thought 
RouteFlow brought a bit more mental and physical burden and 
effort. We noticed that P10 and P15 performed equally accurately 
with RouteFlow and the vector-field-based method but reported 
higher subjective performance and preference for RouteFlow. They 
commented that objects in RouteFlow were “less occluded”, making 
them “more convinced.” 

T2—Identifying the global trend: 13 participants preferred Route-
Flow. Specifically, P1 appreciated that RouteFlow gradually revealed 
the global trend along with the group movement, just like “painting 
with a brush.” In contrast, P6 preferred the focus+context grouping 
method, explaining “It is easier to connect the movements of different 
groups into a global trend.” P10 liked the vector-field-based method 

and noted that “I need to memorize the positions objects pass through 
to identify the global trend. [The vector-field-based method] requires 
less memory burden, as I can observe objects moving simultaneously 
in the global trend.” 

T3—Locating local hotspots: All participants ranked RouteFlow at 
the top, indicating a strong advantage of our method. Their reasons 
mainly focused on the clear and noticeable animated transitions, 
showing groups that were converging and diverging. 

Ours F+C VF 

7 

7 

2 

2 

6 

8 

13 

1 

2 

3 

0 

0 

2 3 

4 

1 113 

11 

10 

Ours F+C VF 

0 3 

3 

15 

12 

12 

Ours F+C VF 

0 

0 

0 0 

R
an

k B
et

te
r

W
or

se
 

(c)(b)(a)(a) Task T1 (b) Task T2 (c) Task T3 

Fig. 13. Participants’ preference ranks of different methods 
on three tasks. Smaller ranks indicate stronger preferences. 

6 Discussion and Future Work 
As demonstrated by the results from both the quantitative evalu-
ation and user study, the primary benefit of RouteFlow lies in its 
capacity to effectively reveal the global trend and identify local 
hotspots. It also maintains comparable performance in tracking 
objects. The participants generally gave positive feedback on its 
usability. Nonetheless, they also pointed out several limitations that 
deserve further investigation. 
Introducing additional visual channels. RouteFlow delivers an 
elaborate animation by planning animation paths and generating a 
compact and non-occluded object layout. In the user study, P10, who 
majored in information design, suggested including more visual 
channels to enhance the expressiveness of animations. For instance, 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

using different colors and brightness can help users track the tar-
geted objects [28]. Moreover, objects can be encoded in varying 
sizes based on their importance, making them more easily distin-
guishable. A recent study has also validated that the variations in 
object brightness and size have a positive impact on perceiving 
groups [9]. In the future, we can apply a dynamic color palette to 
our generated object layout to improve the animation [12]. 
Interactive animation adjustment. Our method automatically 
generates animations based on the input trajectories, easing the 
effort required for manual design. On top of the automated method, 
RouteFlow can be enhanced by supporting users to interactively 
design and refine animations, addressing their unique needs [49]. 
For example, users can directly drag to refine the animation paths or 
modify the corresponding object groups and layout, and our method 
can propagate the changes to the whole animation. Therefore, users 
do not need to manipulate each object in detail. Besides, our method 
can be integrated with dynamic parameter adjustment to balance 
different types of forces in our hierarchical edge bundling for an-
imation path generation. As such, we can analyze data features 
such as trajectory density, local hotspot distribution, or occlusion 
levels and adjust parameters on targeted datasets or areas to iden-
tify different local hotspots. Users can also interactively specify 
parameters on demands. 
Supporting more trajectory patterns. While our current method 
effectively highlights the global trend and local hotspots, trajec-
tory data often contains other patterns that can provide valuable 
insights [54]. For instance, periodic patterns represent movements 
that repeat at regular intervals, such as daily commutes or seasonal 
migrations [5]. Anomalies refer to movements that deviate sig-
nificantly from the norm, representing unusual or rare behaviors, 
such as a migratory bird taking an abnormal path due to envi-
ronmental disruptions [33, 34]. A practical solution is integrating 
existing pattern detection techniques [10] and designing animations 
to communicate these patterns effectively to users. For example, 
trajectories that exhibit periodic patterns could be animated with 
pulsating effects or cyclic color changes [1], clearly highlighting 
their repetitive nature over time. 
Scalability. RouteFlow faces scalability issues due to both algo-
rithmic capabilities and visual constraints. From the algorithmic 
perspective, RouteFlow can process hundreds of moving objects in 
real time. When scaled to one thousand objects, RouteFlow com-
pletes processing in around 10 seconds, making real-time animation 
impractical at this scale. From the visual perspective, the number of 
displayed objects is constrained by both screen space and human 
perception. Especially, previous studies have shown that people 
can only track a limited subset of moving objects [19, 20], making 
human perception a more limiting factor. A potential solution to 
address these limitations is to combine a sampling method with 
our animation method. The key challenge is to identify a set of rep-
resentative samples that effectively capture both the global trend 
and the local hotspots. 

7 Conclusion 
In this paper, we present RouteFlow, a trajectory-aware animated 
transition method to enhance the analysis of the movement trend 

and object tracking in the animation process. By analogizing anima-
tion paths to bus routes and the object layout to the seat allocation, 
RouteFlow offers clear and smooth animations of moving objects 
along their trajectories. The key feature of RouteFlow lies in its 
balanced depiction of the global trend and local hotspots, coupled 
with its ability to minimize occlusion. This balance improves users’ 
capability to track movements and understand complex interactions 
within the objects. The quantitative evaluation and user study fur-
ther validate that RouteFlow performs better than existing methods 
in identifying the global trend and locating local hotspots. 

Acknowledgments 
Duan Li, Xinyuan Guo, and Shixia Liu are supported by the National 
Natural Science Foundation of China under grants U21A20469, 
61936002 and in part by Tsinghua University-China Telecom Wan-
wei Joint Research Center. Lingyun Yu is supported by the National 
Natural Science Foundation of China under grant 62272396. The 
authors would like to thank Jiangning Zhu, Zhen Li, Jiashu Chen, 
Yukai Guo, and Prof. Weikai Yang for their valuable contributions 
to the discussions and comments. 

References 
[1] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 

2011. Visualization of Time-Oriented Data. Vol. 4. Springer. 
[2] Augusto Aubry, Antonio De Maio, Alessio Zappone, Meisam Razaviyayn, and Zhi-

Quan Luo. 2018. A New Sequential Optimization Procedure and Its Applications to 
Resource Allocation for Wireless Systems. IEEE Transactions on Signal Processing 
66, 24 (2018), 6518–6533. 

[3] Danish Maritime Authority. 2020. Data from the Danish AIS system. Retrieved 
July 4, 2024 from https://www.dma.dk/safety-at-sea/navigational-information/ 
download-data 

[4] Matthew Brehmer, Bongshin Lee, Petra Isenberg, and Eun Kyoung Choe. 2020. 
A Comparative Evaluation of Animation and Small Multiples for Trend Visu-
alization on Mobile Phones. IEEE Transactions on Visualization and Computer 
Graphics 26, 1 (2020), 364–374. 

[5] Huiping Cao, Nikos Mamoulis, and David W. Cheung. 2007. Discovery of Periodic 
Patterns in Spatiotemporal Sequences. IEEE Transactions on Knowledge and Data 
Engineering 19, 4 (2007), 453–467. 

[6] Nan Cao, David Gotz, Jimeng Sun, and Huamin Qu. 2011. DICON: Interactive 
Visual Analysis of Multidimensional Clusters. IEEE Transactions on Visualization 
and Computer Graphics 17, 12 (2011), 2581–2590. 

[7] Erin Catto. 2010. Box2D. https://box2d.org/ 
[8] C. CERL. 2015. MEI - Material Evidence in Incunabula. Retrieved July 4, 2024 

from https://data.cerl.org/mei/_search 
[9] Amira Chalbi, Jacob Ritchie, Deokgun Park, Jungu Choi, Nicolas Roussel, Niklas 

Elmqvist, and Fanny Chevalier. 2020. Common Fate for Animated Transitions in 
Visualization. IEEE Transactions on Visualization and Computer Graphics 26, 1 
(2020), 386–396. 

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection: 
A survey. ACM Computing Surveys 41, 3 (2009), 1–58. 

[11] Bay-Wei Chang and David Ungar. 1993. Animation: From Cartoons to the User 
Interface. In Proceedings of ACM Symposium on User Interface Software and Tech-
nology. 45–55. 

[12] Jiashu Chen, Weikai Yang, Zelin Jia, Lanxi Xiao, and Shixia Liu. 2025. Dynamic 
Color Assignment for Hierarchical Data. IEEE Transactions on Visualization and 
Computer Graphics 31, 1 (2025), 338–348. 

[13] Fanny Chevalier, Pierre Dragicevic, and Steven Franconeri. 2014. The Not-so-
Staggering Effect of Staggered Animated Transitions on Visual Tracking. IEEE 
Transactions on Visualization and Computer Graphics 20, 12 (2014), 2241–2250. 

[14] Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao, Huamin 
Qu, and Xin Tong. 2011. Textflow: Towards Better Understanding of Evolving 
Topics in Text. IEEE Transactions on Visualization and Computer Graphics 17, 12 
(2011), 2412–2421. 

[15] Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist, and Jean-
Daniel Fekete. 2011. Temporal Distortion for Animated Transitions. In Proceedings 
of the CHI Conference on Human Factors in Computing Systems. 2009–2018. 

[16] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Animat-
ing from Markup Code to Rendered Documents and Vice Versa. In Proceedings of 
ACM Symposium on User Interface Software and Technology. 257–262. 

https://www.dma.dk/safety-at-sea/navigational-information/download-data
https://www.dma.dk/safety-at-sea/navigational-information/download-data
https://box2d.org/
https://data.cerl.org/mei/_search


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

[17] Fan Du, Nan Cao, Jian Zhao, and Yu-Ru Lin. 2015. Trajectory Bundling for 
Animated Transitions. In Proceedings of the CHI Conference on Human Factors in 
Computing Systems. 289–298. 

[18] David E. Fencsik, Sarah B. Klieger, and Todd S. Horowitz. 2007. The Role of 
Location and Motion Information in the Tracking and Recovery of Moving 
Objects. Perception & Psychophysics 69 (2007), 567–577. 

[19] Cary S. Feria. 2012. The effects of distractors in multiple object tracking are 
modulated by the similarity of distractor and target features. Perception 41, 3 
(2012), 287–304. 

[20] S. L. Franconeri, S. V. Jonathan, and J. M. Scimeca. 2010. Tracking multiple objects 
is limited only by object spacing, not by speed, time, or capacity. Psychological 
Science 21, 7 (2010), 920–925. 

[21] Petitjean François, Ketterlin Alain, and Gançarski Pierre. 2011. A global averaging 
method for dynamic time warping, with applications to clustering. Pattern 
Recognition 44, 3 (2011), 678–693. 

[22] Emden R. Gansner, Yifan Hu, Stephen North, and Carlos Scheidegger. 2011. Mul-
tilevel Agglomerative Edge Bundling for Visualizing Large Graphs. In Proceedings 
of IEEE Pacific Visualization Symposium. 187–194. 

[23] Jochen Görtler, Christoph Schulz, Daniel Weiskopf, and Oliver Deussen. 2018. 
Bubble Treemaps for Uncertainty Visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 24, 1 (2018), 719–728. 

[24] David Guilmaine, Christophe Viau, and Michael J. McGuffin. 2012. Hierarchi-
cally Animated Transitions in Visualizations of Tree Structures. In International 
Working Conference on Advanced Visual Interfaces. 514—-521. 

[25] hao86. 2005. Railway statistics. Retrieved August 21, 2024 from https://train. 
hao86.com/ 

[26] Jeffrey Heer and George Robertson. 2007. Animated Transitions in Statistical 
Data Graphics. IEEE Transactions on Visualization and Computer Graphics 13, 6 
(2007), 1240–1247. 

[27] Danny Holten and Jarke J. Van Wijk. 2009. Force-Directed Edge Bundling for 
Graph Visualization. Computer Graphics Forum 28, 3 (2009), 983–990. 

[28] Yueqi Hu, Tom Polk, Jing Yang, Ye Zhao, and Shixia Liu. 2016. Spot-Tracking 
Lens: A Zoomable User Interface for Animated Bubble Charts. In Proceedings of 
IEEE Pacific Visualization Symposium. 16–23. 

[29] Adojaan K, Sellis U, Väli Ü, Ojaste I, Denac K, L ohmus A, and Kuze J. 2019. 
BirdMap Data - GPS tracking of Storks, Cranes and birds of prey, breeding in 
Northern and Eastern Europe. Retrieved July 4, 2024 from https://doi.org/10. 
15468/vnwmrx Pluto F. Occurrence dataset. 

[30] Aidi Li, Zhijie Xu, Jianqin Zhang, Taizeng Li, Xinyue Cheng, and Chaonan 
Hu. 2023. A Vector Field Visualization Method for Trajectory Big Data. ISPRS 
International Journal of Geo-Information 12, 10 (2023), 1–21. 

[31] Leon YO Li and Zhuo Fu. 2002. The school bus routing problem: a case study. 
Journal of the Operational Research Society 53, 5 (2002), 552–558. 

[32] Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. 2014. A survey on 
Information Visualization: Recent Advances and Challenges. The Visual Computer 
30 (2014), 1373–1393. 

[33] Siyuan Liu, Lionel M. Ni, and Ramayya Krishnan. 2014. Fraud Detection From 
Taxis’ Driving Behaviors. IEEE Transactions on Vehicular Technology 63, 1 (2014), 
464–472. 

[34] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. 2011. Discovering 
Spatio-Temporal Causal Interactions in Traffic Data Streams. In Proceedings of 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 
1010—-1018. 

[35] Ferdinando Di Martino, Witold Pedrycz, and Salvatore Sessa. 2019. Hierarchical 
granular hotspots detection. Soft Computing 24, 2 (2019), 1357–1376. 

[36] Meinard Müller. 2007. Dynamic Time Warping. Springer, 69–84. https://doi.org/ 
10.1007/978-3-540-74048-3_4 

[37] Suganuma Mutsumi and Yokosawa Kazuhiko. 2006. Grouping and Trajectory 
Storage in Multiple Object Tracking: Impairments Due to Common Item Motions. 
Perception 35, 4 (2006), 483–495. 

[38] OpenSky Network. 2020. Open Air Traffic Data for Research. Retrieved August 
21, 2024 from https://opensky-network.org/datasets/states 

[39] Nguyen Quan, Hong Seok-Hee, and Eades Peter. 2012. TGI-EB: A New Frame-
work for Edge Bundling Integrating Topology, Geometry and Importance. In 
Proceedings of Graph Drawing. 123–135. 

[40] George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John 
Stasko. 2008. Effectiveness of Animation in Trend Visualization. IEEE Transactions 
on Visualization and Computer Graphics 14, 6 (2008), 1325–1332. 

[41] Hart Sandra G. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006), 
904–908. 

[42] David Selassie, Brandon Heller, and Jeffrey Heer. 2011. Divided Edge Bundling 
for Directional Network Data. IEEE Transactions on Visualization and Computer 
Graphics 17, 12 (2011), 2354–2363. 

[43] Jia Tao and Ji Zheng. 2017. Understanding the Functionality of Human Activity 
Hotspots from Their Scaling Pattern Using Trajectory Data. ISPRS International 
Journal of Geo-Information 6, 11 (2017), 1–16. 

[44] Yaguang Tao, Alan Both, Rodrigo I. Silveira, Kevin Buchin, Stef Sijben, Ross S. 
Purves, Patrick Laube, Dongliang Peng, Kevin Toohey, and Matt Duckham. 2021. 
A comparative analysis of trajectory similarity measures. GIScience & Remote 
Sensing 58, 5 (2021), 643–669. 

[45] Dejan Todorovic. 2008. Gestalt Principles. Scholarpedia 3, 12 (2008), 5345. 
[46] 5D Vision. 2006. Retrieved August 8, 2024 from https://birdmap.5dvision.ee/EN 

A website demo of BirdMap dataset. 
[47] Johan Wagemans, James H. Elder, Michael Kubovy, Stephen E. Palmer, Mary A. 

Peterson, Manish Singh, and Rüdiger von der Heydt. 2012. A Century of Gestalt 
Psychology in Visual Perception I. Perceptual Grouping and Figure-Ground 
Organization. Psychological Bulletin 138, 6 (2012), 1172–1217. 

[48] Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg, and 
Jaakko Peltonen. 2022. Edge-Path Bundling: A Less Ambiguous Edge Bundling 
Approach. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 
313–323. 

[49] Yong Wang, Daniel Archambault, Carlos E Scheidegger, and Huamin Qu. 2018. 
A Vector Field Design Approach to Animated Transitions. IEEE Transactions on 
Visualization and Computer Graphics 24, 9 (2018), 2487–2500. 

[50] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti Hearst. 2001. Animated 
Exploration of Dynamic Graphs with Radial Layout. In Proceedings of IEEE Sym-
posium on Information Visualization. 43–50. 

[51] Jun Yuan, Mengchen Liu, Fengyuan Tian, and Shixia Liu. 2023. Visual Analysis of 
Neural Architecture Spaces for Summarizing Design Principles. IEEE Transactions 
on Visualization and Computer Graphics 29, 1 (2023), 288–298. 

[52] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with Knowl-
edge from the Physical World. In Proceedings of ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. 316—-324. 

[53] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, 
and Yan Huang. 2010. T-Drive: Driving Directions Based on Taxi Trajectories. In 
Proceedings of SIGSPATIAL International Conference on Advances in Geographic 
Information Systems. 99—-108. 

[54] Yu Zheng. 2015. Trajectory Data Mining: An Overview. ACM Transactions on 
Intelligent Systems and Technology 6, 3 (2015), 1–41. 

[55] Yixian Zheng, Wenchao Wu, Nan Cao, Huamin Qu, and Lionel M Ni. 2018. 
Focus+Context Grouping for Animated Transitions. Journal of Visual Languages 
& Computing 48 (2018), 61–69. 

https://train.hao86.com/
https://train.hao86.com/
https://doi.org/10.15468/vnwmrx
https://doi.org/10.15468/vnwmrx
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.1007/978-3-540-74048-3_4
https://opensky-network.org/datasets/states
https://birdmap.5dvision.ee/EN


RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

A Quantitative Experiment on Edge Bundling 
We conducted a quantitative experiment to compare the effective-
ness of our trajectory-driven path generation algorithm with two 
representative edge bundling algorithms. The experiment aims to 
assess 1) the deviation of the bundled paths from the original ones, 
and 2) the efficiency in reducing the total path length. The same 
datasets used in Sec. 5.1 were employed for this experiment. 
Baseline algorithms. We selected two representative edge 
bundling algorithms for comparison. The first, divided edge 
bundling (DEB) [42], employs the attraction and spring forces to 
bundle edges with similar positions and directions. The second, 
multilevel agglomerative edge bundling (MAEB) [22], hierarchi-
cally bundles similar edges to minimize the total path length. For 
both algorithms, we used the default parameters reported in their 
papers. 
Evaluation criteria. We adopted two metrics, deviation and ink 
ratio [48], which assess the deviation from the original paths and 
the efficiency in reducing the total path length, respectively. Let 
the original path set be 𝑆 = {𝑠1, . . . , 𝑠𝑛 } and the bundled path set 
be 𝑆 ′ = {𝑠′ 1, . . . , 𝑠

′ 
𝑛 }. 

Deviation measures the misalignment of the bundled paths with 
the original ones. Following the common practice [21, 44], the mis-
alignment of a bundled path 𝑠 ′ 

𝑖
and its original path 𝑠𝑖 is measured 

by their dynamic time warping distance DTW(𝑠𝑖 , 𝑠 ′𝑖 ). The deviation 
is then calculated as the average dynamic time warping distance 
across all pairs of bundled and original paths: 

Deviation(𝑆, 𝑆 ′ ) = 
1 
𝑛 

𝑛∑︁ 

𝑖 =1 

DTW(𝑠𝑖 , 𝑠 ′ 𝑖 ) 

Ink ratio measures the efficiency in reducing the total path 
length. It is calculated as the ink of the bundled path set 𝑆 ′ divided 
by that of the original path set 𝑆 : 

Ink ratio(𝑆, 𝑆 ′ ) = 
Ink(𝑆 ′ ) 
Ink(𝑆 ) , 

where Ink(𝑆 ) is the number of pixels occupied by the paths in 𝑆 [48]. 
Results 

Table 3 shows the comparison results on seven datasets. These 
results indicate that our algorithm achieves the lowest deviation 
and performs comparably with the baseline algorithms in terms of 
ink ratio. 

Table 3: Comparison between different edge bundling algo-
rithms, including divided edge bundling (DEB) [42], multi-
level agglomerative edge bundling (MAEB) [22], and our algo-
rithm (RouteFlow). Lower values are better for both metrics. 

Dataset Deviation Ink ratio 

DEB MAEB RouteFlow DEB MAEB RouteFlow 

Taxi [52, 53] 0.023 0.017 0.012 0.387 0.349 0.378 
BirdMap [29] 0.048 0.035 0.016 0.237 0.235 0.239 
Railway [25] 0.038 0.031 0.018 0.243 0.309 0.234 
MEIBook [8] 0.034 0.018 0.017 0.397 0.327 0.388 

OpenSkyAirline [38] 0.043 0.014 0.014 0.393 0.342 0.339 
US Migration [27] 0.045 0.023 0.019 0.432 0.272 0.250 
DanishAIS [3] 0.071 0.076 0.024 0.213 0.201 0.252 

Average 0.043 0.030 0.017 0.329 0.291 0.296 

Start End 

Missed 

PreservedMissed 

Preserved 

Chokepoints 
Preserved 

Missed 

(a) (b)

(c) (d)

(a) Original paths (b) DEB 

(c) MAEB (d) RouteFlow 

Fig. 14. Original paths and the edge bundling results on the 
DanishAIS dataset. 

Deviation. The baseline algorithms perform worse in terms of 
deviation because they do not explicitly preserve the original paths 
and often excessively aggregate paths. This leads to larger devia-
tion from the original paths and hinders the identification of local 
hotspots. For example, as shown in Fig. 14(a), the DanishAIS mar-
itime transportation dataset contains two chokepoints that signif-
icantly impact maritime traffic efficiency, making them strategic 
hotspots for route optimization. However, the baseline algorithms 
fail to preserve these chokepoints (Figs. 14(b) and (c)). In contrast, 
RouteFlow reduces the deviation from the original paths using 
an anchor force and effectively preserves these two chokepoints 
(Fig. 14(d)). This preservation enables more accurate and effective 
route optimization. 

Ink ratio. Out of the seven datasets, MAEB achieves the lowest 
ink ratio in four, while RouteFlow achieves the lowest in three. 
MAEB’s better performance is due to its focus on optimizing ink 
ratio, but this comes at the cost of higher deviation from the original 
paths. In contrast, RouteFlow balances ink ratio and deviation, sac-
rificing a small amount of ink ratio to better align the bundled paths 
with the original ones. This balance is important in generating clear 
and reliable animation. For example, as shown in Fig. 15(a), migra-
tory birds in the BirdMap dataset take detour paths along the Great 
Rift Valley to access water or suitable habitats during their journey 
from Europe to Africa. These detour paths are critical to understand-
ing the birds’ movement patterns in the context of geographical 
features. However, MAEB distorts the original paths and bundles 
them into straight paths to minimize the ink ratio, which obscures 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Duan Li, Xinyuan Guo, Xinhuan Shu, Lanxi Xiao, Lingyun Yu, and Shixia Liu 

Start End 

Africa 

The Great 
Rift Valley 

Europe 

Detour paths Straight paths 

Straight paths Detour paths 

(a) (b) 

(c) (d) 

(a) Original paths (b) DEB 

(c) MAEB (d) RouteFlow 

Fig. 15. Original paths and the edge bundling results on the 
BirdMap dataset. 

the birds’ actual movement patterns (Fig. 15(c)). Although DEB 
does not explicitly minimize the ink ratio, it also bundles the paths 
into straight paths and obscures the movement patterns in this 
example (Fig. 15(b)). In contrast, RouteFlow effectively bundles the 
paths while preserving the detour paths (Fig. 15(d)). This provides a 
clearer and more reliable visual summary of the birds’ movements. 

B Detailed Animation Result Analysis 
To facilitate interpreting the magnitudes of the measured values, 
Fig. 16 compares the animation results with different measured 
values, which are generated by three methods: RouteFlow, the fo-
cus+context grouping method (F+C) and the vector-field-based 
method (VF). These methods are the same as in Sec. 5.1. Fig. 16(a) 
shows the positions of all objects, the same as in Fig. 9. For easy com-
parison, we select a subset of 10 objects in a group (with the orange 
contour), and calculate their values for each metric in this frame 
(Figs. 16(c)-(e)), except for overall occlusion, which is calculated on 
all objects (Fig. 16(b)). 

Occlusion. Figs. 16(b) and (c) compare the animation results 
generated by the three methods in terms of the overall and within-
group occlusion. RouteFlow prevents overlap between objects when 
they move together as a group, thereby achieving an occlusion score 
of 0.00000 for both metrics at this frame. However, overlaps remain 
unavoidable at local hotspots where objects converge and diverge. 
In contrast, the focus+context grouping method and the vector-
field-based method result in object overlap to different degrees. For 
example, the focus+context grouping method achieves an overall 

VF 

(a)

RouteFlowF+C 

Overall result 

VF RouteFlow 0.000000.00090 
(b)

23 objects 
overlap 

F+C 0.00124 

31 objects 
overlap 

0.06667VF 0.00000RouteFlow 

5 objects overlap 

0.13333F+C 

7 objects 
overlap 

Results of the selected subset 

VF 

Current 
frame 

0.00433 RouteFlow 0.00000F+C 0.00850 

0.03677VF 

Convex hull 

0.01573RouteFlow 

Convex hull 

~80% occupied~40% occupied 

0.06006F+C 

Convex hull 
~20% occupied 

(a) A subset of 10 objects for detailed analysis 

(b) Overall occlusion 

(c) Within-group occlusion 

(d) Deformation 

(e) Dispersion 

Fig. 16. Comparisons of the three animation results with 
different metric values, which are generated by the three 
methods. Here, (b)-(e) show the different metric values of the 
10 objects. 

occlusion score of 0.00124, with 31 out of 51 objects overlapping, 
and a within-group occlusion score of 0.13333, with 7 of the 10 
objects overlapping. 

Deformation. Fig. 16(d) compares the animation results gener-
ated by the three methods in terms of deformation. This metric 



RouteFlow: Trajectory-Aware Animated Transitions CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

measures the changes in distance between objects from the previous 
frame (grey) to the current frame (dark grey). RouteFlow organizes 
the objects that move together into a cohesive group, with their 
relative positions changing only at local hotspots. As a result, the 
deformation score is 0.00000, indicating no changes in the distance 
between objects. In contrast, the focus+context grouping method 
and the vector-field-based method do not explicitly manage the 
object layout, leading to larger deformation scores. For example, 
the focus+context grouping method achieves a deformation score 
of 0.00850, indicating that the average distance between objects has 
changed by approximately 1.46 times the object’s radius. 

Dispersion. Fig. 16(e) compares the animation results generated 
by the three methods in terms of dispersion. RouteFlow closely 
groups the objects that move together, resulting in the lowest disper-
sion score of 0.01573, with the objects occupying approximately 80% 
of the space within their convex hull. In contrast, the focus+context 
grouping method and the vector-field-based method exhibit higher 
dispersion scores. For example, the focus+context grouping method 
achieves a dispersion score of 0.06006, with the objects occupying 
approximately 20% of the space within their convex hull. 

C User Study Settings 
C.1 Synthetic Dataset Generation 
As illustrated in Fig. 10, our dataset generation process involves 
three steps: generate the global trend, determine local hotspots, and 
create trajectories. 

Since the global trend can be depicted by representative trajec-
tories [54], we generate a smooth trajectory using B-splines as the 
ground truth. We include one or two bends in these B-splines, lead-
ing to 2 types of the global trend in our dataset. To achieve this, we 
randomly select two points as the start and end points and sample 
one (for one bend) or two (for two bends) intermediate points as 
B-spline control points within the region between them. To avoid 
highly curved trajectories, we ensure that the angle between any 
three consecutive points (start, control points, and end) is greater 
than 135 degrees. 

Next, to determine local hotspots, we randomly sample points 
along the generated B-spline and designate these points as ground 
truth for local hotspots. Feedback from our pilot study indicates that 
to balance complexity and diversity, the number of local hotspots 
should be limited to two or three, with each dataset containing at 
least one of the local hotspot types: convergence or divergence. 
Each local hotspot is then randomly assigned as either a converg-
ing or diverging point, resulting in three possible assignments: 1 
convergence + 1 divergence, 2 convergences + 1 divergence, and 1 
convergence + 2 divergences. Considering the types of the global 
trend and the local hotspot assignments, we generate 6 dataset 
types (2 types of the global trend × 3 local hotspot assignments). 
To simplify the evaluation, we 1) limit the number of branches at 
the local hotspots to 2; 2) select one B-spline as the global trend 
and generate another branch at the local hotspots along this B-
spline; and 3) avoid crossing between the two branches of each 
local hotspot. 

Finally, we generate the trajectories for the objects. Following 
the user feedback and the setting of previous studies [55], we set 
the number of trajectories to 30. The trajectories are generated by 

adding random perturbations to the global trend and the branches 
of the local hotspots. 

C.2 Method Counterbalance 
In our user study, we counterbalanced the order of different meth-
ods. We divided 15 participants into five groups, with three par-
ticipants in each group. Within each group, we used an expanded 
Latin square and applied a cyclic shift to the method order for each 
participant. The three methods are denoted as A, B, and C. In the 
test scenario, the order in which these methods were presented to 
the participants in each group was as follows: 

• A B C, B C A, C A B, A B C, B C A, C A B, A B C, B C A, C A 
B, A B C, B C A, C A B 

• B C A, C A B, A B C, B C A, C A B, A B C, B C A, C A B, A B 
C, B C A, C A B, A B C 

• C A B, A B C, B C A, C A B, A B C, B C A, C A B, A B C, B C 
A, C A B, A B C, B C A 


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 The Bus Route Analogy
	3.2 Trajectory-Driven Path Generation
	3.3 Object Layout Generation

	4 Method
	4.1 Trajectory-Driven Path Generation
	4.2 Object Layout Generation
	4.3 Implementation

	5 Evaluation
	5.1 Quantitative Evaluation
	5.2 User Study

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Quantitative Experiment on Edge Bundling
	B Detailed Animation Result Analysis
	C User Study Settings
	C.1 Synthetic Dataset Generation
	C.2 Method Counterbalance




