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Exploring and Modeling Directional Effects on Steering Behavior in
Virtual Reality

Yushi Wei *, Kemu Xu , Yue Li , Lingyun Yu , and Hai-Ning Liang †, Member, IEEE

Abstract— Steering is a fundamental task in interactive Virtual Reality (VR) systems. Prior work has demonstrated that movement
direction can significantly influence user behavior in the steering task, and different interactive environments (VEs) can lead to various
behavioral patterns, such as tablets and PCs. However, its impact on VR environments remains unexplored. Given the widespread use
of steering tasks in VEs, including menu adjustment and object manipulation, this work seeks to understand and model the directional
effect with a focus on barehand interaction, which is typical in VEs. This paper presents the results of two studies. The first study
was conducted to collect behavioral data with four categories: movement time, average movement speed, success rate, and reenter
times. According to the results, we examined the effect of movement direction and built the SθModel. We then empirically evaluated
the model through the data collected from the first study. The results proved that our proposed model achieved the best performance
across all the metrics (r2 > 0.95), with more than 15% improvement over the original Steering Law in terms of prediction accuracy.
Next, we further validated the SθModel by another study with the change of device and steering direction. Consistent with previous
assessments, the model continues to exhibit optimal performance in both predicting movement time and speed. Finally, based on the
results, we formulated design recommendations for steering tasks in VEs to enhance user experience and interaction efficiency.

Index Terms—Virtual reality; human performance modeling; steering law; barehand interaction; head-mounted display

1 INTRODUCTION

Using mathematical models to generalize and encapsulate human be-
haviors within interactive processes is a foundational topic in human-
computer interaction (HCI) [5, 52, 60]. One of the most well-tested,
validated, and commonly used models is the Steering Law, which
is designed to predict movement time (MT ) in steering-based tasks,
where users are required to navigate an object from its initial position
to the endpoint along paths with different configurations, including
variations in path width and length [1]. Specifically, steering is a fre-
quently encountered task across various application scenarios in virtual
environments (VEs), including object translation, interface manipula-
tion, and vehicle navigation. Thus, the Steering Law has become an
indispensable tool for understanding users’ behavioral patterns within
those tasks. For example, in 2D-based interactive environments such
as tablets, laptops, and smartphones, a multitude of extended models
based on the Steering Law have been further proposed. These models
aim to investigate and encompass a broader range of factors influencing
human behavior, i.e., path curvature [24, 38, 57], scale [2, 56], starting
position [66], and devices latency [55].

With the growing complexity of application scenarios and tasks, such
as interface manipulation and object dragging, there is an increasing
recognition of the impact of movement direction. Previous research in
2D environments has demonstrated that different movement directions
can significantly influence user behavior and performance [4,65]. These
studies attribute the directional effect to the engagement of various
muscle groups and the constraints imposed by the skeletal structure
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of the arm under different directions [4]. Compared to traditional
2D interactions, contemporary virtual reality (VR) systems provide
users with enhanced interactive freedom. Instead of being confined
to a small screen and limited interactions using a stylus or mouse,
users can now engage with 3D space using their own bodies, a form
of interaction now referred to as spatial interaction. This includes
actions like reaching out and grasping by their hand, enabling multi-
directional interactions within a volumetric space, resulting in larger
bodily movement amplitudes and different behavioral patterns [44].

However, it is important to acknowledge the gap in understand-
ing how movement direction affects user behavior in VEs. Previous
findings and extended models considering the directional effect based
on 2D scenarios cannot be directly applied to 3D environments [47].
This is due to the increased freedom of interaction in 3D via spatial
interaction, leading to more intricate interaction mechanisms and neces-
sitating greater coordination or constraints in users’ joint and muscle
movements [12]. Consequently, with the rising adoption of VR head-
mounted displays (HMDs) and the distinct attributes of 3D VEs, it is
necessary to formulate new models. These models should intricately
account for the distinctive qualities of VEs and the impact of direction
in steering tasks, aiming to describe and encapsulate user behavioral
patterns comprehensively and precisely.

Therefore, in this work, we conducted two user studies to achieve a
comprehensive understanding of user behavior mechanisms. Departing
from the traditional VR interaction approach of raycasting, we opted for
a more intuitive method [34], utilizing barehand as a way of interaction.
This decision was guided by two primary considerations: (1) Barehand-
based steering involves more extensive body movements, engages a
broader range of muscles, and encompasses various poses [3, 40]. This
increased physical activity provides a clearer view of the effects of
different directions in steering tasks. (2) In 3D VR-based applications,
barehand steering provides a broader range of application scenarios.
This is especially pertinent as users in VEs are often required to perform
actions such as dragging objects or translating user interfaces along
specific paths [26, 36].

These two comprehensive user studies allowed us to gain insights
into how steering direction influences user behavior in 3D VEs. Within
the first study, we collected user behavior data to understand perfor-
mance and behavior under various directions (see Sec. 4). Next, the
data guiding the development of our model is termed the Sθ model.
We then verified and evaluated the predictability of this model. The
empirical findings demonstrated that the Sθ model exhibited robust
predictability for movement time (R2 = 0.958), surpassing the original
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Steering Law across all metrics (see Sec. 5). Subsequently, we changed
the conditions and settings in the second study, such as the movement
direction and the equipment used, to further examine the reliability of
our model. The outcomes suggest that the Sθ model still demonstrated
the best performance in all metrics in predicting the movement time
and average movement speed (see Sec. 6). Finally, drawing from our
insights into the influence of direction on user behavior, we formulated
design recommendations for future VR steering tasks (see Sec. 8).

The primary contributions of our work include: (1) Results and inter-
pretation of the behavioral characteristics of barehand-based steering
tasks across different steering directions. Our study recorded various
behavioral data, including movement time, average movement speed,
success rates, and reentry frequency, across a range of path conditions.
Additionally, we explored the effect of factors like path width, length,
and direction on these behavioral outcomes. (2) An enhanced and novel
Steering Law model was proposed for predicting movement time (MT)
in 3D virtual environments, accounting for varying directions during
barehand-based steering tasks. (3) An evaluation of the proposed model
led to two recommendations for designing steering-based tasks for VR
HMDs.

2 RELATED WORK

This section provides an overview of the two most commonly used
models in the HCI community, namely Fitts’ law and Steering Law,
which are both employed to predict movement time (MT ) within dif-
ferent tasks. It subsequently discusses previous models that aim to
explain and encapsulate the directional effect on human behaviors. Fi-
nally, the section discussed bare-hand-based interaction, elucidating its
characteristics, advantages, and limitations.

2.1 Modeling Pointing and Steering
Fitts’ law, the most widely used human-behavior-based probabilistic
model in the HCI community [27, 35, 39], is designed to assess and
predict users’ performance based on the metric of movement time (MT )
in pointing selection tasks [15, 16]. The original model, i.e., simply
Fitts’ model, is formulated using the index of difficulty (ID) as follows:

MT = a+b · ID,

ID = log2


2A
W


.

(1)

MT refers to the time taken during the selection from the initial position
to the select point at the target and is primarily influenced by the value
of ID, which is a combination of two parameters (W and A). Where W
represents the width of the target, A refers to the amplitude (distance)
between the starting location and the target, and a and b are empirical
values derived via regression.

Inspired by Fitts’ law, Steering Law was subsequently proposed by
Accot and Zhai [1]. They extended the model from pointing selection to
a trajectory-based task, which allows the model to have the capabilities
to predict and interpret human behavior in the process of steering. The
model can be represented as:

MT = a+b


C

ds
W (s)

(2)

Where C denotes the path that needs steering through. Here, s and W (s)
represent the infinitesimal length and width at s of the path, respectively.
a and b remain empirical constants. Furthermore, if the path width
remains constant, the model can be further simplified as follows:

MT = a+b
A
W

(3)

It should be noted that the definitions of W and A are not identical to
Fitts’ law due to the transformation of the objective tasks (from pointing
selection to steering). In Eq. (3), W and A, respectively, refer to the
path width and the entire path length.

2.2 Modeling Directional Effects on Pointing and Steering
Tasks

The directional effects on users’ behaviors have been demonstrated
by many studies within various interaction scenarios [6, 10, 14, 49, 53].
However, most of these works only focus on observing and reporting
the effects without employing mathematical models to summarize and
generalize the effects directly. Therefore, owing to the limited number
of models that have considered the effect of movement direction, we
have subsequently summarized several typical models to offer a com-
prehensive overview and understanding of the directional effect and
modeling methods.

The first exploration of the directional effect in pointing tasks in
a 3D environment was undertaken by Murata and Iwase using elec-
tromagnetic devices [37]. They investigated the directional effect by
setting eight different azimuth angles from 0◦ to 315◦, increasing at
intervals of 45◦ under the spherical coordinate system. Their results
indicated that users exhibited optimal performance during horizontal
movements (0◦ and 180◦), as measured by MT , while the worst per-
formance was observed during vertical movements (90◦ and 270◦).
Furthermore, they revealed a sinusoidal relationship between MT and
movement directions, which was expressed as follows:

MT = a+b ·


log2


A
W

+1

+ c · sinθ


(4)

Where A and W , same as Fitts’ law, represent the movement amplitude
and target width. The movement direction θ serves as an additional
variable controlled by a constant value of c. a and b remain constants
that are determined by regression.

The aforementioned result, the sinusoidal relationship between MT
and direction, was further confirmed by Cha and Myung [11] in 3D
electrical sensors and conducting wires-based environments. Neverthe-
less, they extended Murata and Iwase’s model to include the inclination
angle θ1 and also introduced the concept of the effective size/width,
denoted by W +F , where F represented the finger pad size used when
pointing at the target [21]. Coefficients including a, b, c, and d are
empirically determined in the model. (see Eq. (5)).

MT = a+b ·θ1 + c · sinθ +d · log2


2A

W +F


(5)

Furthermore, in 3D VR HMDs, Machuca and Stuerzlinger [4] as-
sessed the stereo deficiencies in virtual hand pointing tasks. It is im-
portant to note that their study was not conducted in an immersive
virtual environment but rather utilized large 3D displays. They fur-
ther observed that users typically exhibit better performance during
horizontal movements compared to movements directed away from or
toward the user. Accordingly, they integrated the parameter of changes
in target depths into Fitts’ law, represented as CT D, into their proposed
model, demonstrating that an increase in CT D led to prolonged MT
(see Eq. (6)).

MT = a+b · log2


A
W

+1

+ c ·CT D (6)

Meanwhile, in 2D touch pointing tasks, the impact of movement
direction was also identified and modeled by extended Fitts’ law. Zhang
et al. [65] integrated the movement direction ω in the model. Addition-
ally, they incorporated the concept of projection to calculate the final
width and height for the square target. Their model can be expressed
as:

MT = a+b


log2





ω


A
W

2
+(1−ω)


A
H

2
+1




 (7)

More specifically, the variable ω signifies cos2(θ). After cos2(θ)
divided by the original width W and height H, the effective width and
height values projected by direction θ can be calculated. Furthermore,
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their model integrates the directional effect within the logarithmic term.
Compared to the previously mentioned models that treat directional
effect as an independent variable, this model demonstrates a more
concise consideration of the target’s shape.

Finally, in the context of steering-based tasks, the effects of direction
have only been examined and modeled within one study, focusing on
the scenario involving a mouse and 2D computer display [47]. They
also observed the sinusoidal relationship between direction and MT , the
same as Fitts’ law. Interestingly, they found that all the linear regression
lines, generated by each A

W values and MT , seem to converge to a
single point. This implies a clear multiplicative relationship between
movement time and A

W . Therefore, the relationship between Gradient
and Intercept across all the directions can be regressed (Where a and b
are empirical constants determined by regression):

Intercept = a+b · (Gradient) (8)

Moreover, the original equation for the Steering Law can be written as
follows:

MT = Intercept+
A
W

(Gradient) (9)

Combining Eq. (8) and Eq. (9), the Gradient can be expressed as:

Gradient =
(MT+a)
(A/W+b)

(10)

Since the sinusoidal relationship between direction and MT was identi-
fied, the Gradient equation can also be formulated as:

Gradient = a+b× sinθ (11)

Finally, substituting Eq. (10) into Eq. (11), the prediction model can
be deduced [47]:

MT = a+Gradient
(

A
W

+b
)

(12)

2.3 Barehand Interactions in VR
With advancements in hand-tracking technology and its unique advan-
tages in interactivity, users can now interact with the objects in a more
natural and intuitive way without the need for additional equipment,
such as controllers [41, 44, 45]. This has significantly enhanced the
immersive experience, presence, and realism felt in virtual environ-
ments [9, 32, 51]. Nowadays, an increasing number of studies have
focused on barehand-based interactions, exploring various scenarios,
including objects or user interface manipulation [59, 61], target selec-
tion [11], text entry and selection [18, 54], and gaming [17, 42].

More relevant to our work are barehand-based steering interactions,
which require users to make direct contact with objects, mirroring real-
life scenarios; this is a common task in virtual environments where
users arrange, drag, and translate objects to specific locations [46, 67].
However, there are still challenges that should be noted due to the
features of barehand-based interaction.

Firstly, compared to the popular interaction method of raycasting,
where an infinite-length ray is projected from the controller in the for-
ward direction, using barehand usually requires more effort to interact
with objects [48]. This increased effort is due to the need for more
physical movement and mental attention to coordinate different body
parts for interaction. For instance, grasping distant objects by the hand
necessitates the simultaneous engagement of the hand, arm, and shoul-
der, often resulting in more extensive arm movements and complex
body coordination than raycasting [12]. Accordingly, in steering-based
tasks, using hands directly to steer toward the target can be more chal-
lenging and demanding for users; they must control the arm to directly
steer the target while also maintaining the stability of various body
parts to ensure precise path following [31, 40]. This challenge may
directly result in users exhibiting different behavioral patterns, and

various factors such as path width, length, and direction may also have
a different impact on user behavior than in previous works because of
this challenge.

Secondly, another issue arises from finger occlusion when making
contact with an object, commonly referred to as "Fat Finger" [7, 23].
For example, Lee and Zhai [30] conducted a study on users’ pointing
performance on a small 2D screen, revealing that the original Fitts’ law
loses accuracy when the button size is sufficiently small. Additionally,
in a 2D pointing task, Ko et al. [28] proposed a model to mitigate
the "Fat Finger" effect by adjusting the effective width and height of
the target in their model to account for finger touch ambiguity based
on FFitts’ law [7]. However, there has been no study specifically
examining the existence of finger occlusion effects in both 2D and 3D
environments within steering tasks. It remains unclear whether finger
contact ambiguity can directly affect users’ steering performance when
dealing with small objects during the task.

In summary, the impact of movement direction has been observed
in various previous works, and several models have been proposed.
However, it is noteworthy that only pointing selection tasks based on
Fitts’ law or 2D small-screen-based steering tasks have been conducted.
Considering the discrepancies in interaction environments [25, 63] (2D
versus 3D), degrees of interaction freedom [34, 50] (mouse versus bare-
hand), and the objectives of tasks [22, 29] (pointing selection versus
steering), there still exists a gap in knowledge and understanding re-
garding the directional effect in 3D immersive VR barehand-based
steering tasks.

3 RESEARCH QUESTION

To facilitate future design references for corresponding tasks, a compre-
hensive understanding of the user behavior in the steering task across
different directions in VEs is necessary. Therefore, we conducted this
research to seek answers to the following questions (marked as RQ#):

RQ1. Can various steering directions significantly impact user
performance and behavior within immersive VEs? As described in
Sec. 2.2, previous work has demonstrated the factor of directions sig-
nificantly affects user performance within various tasks in 2D-based
interactive environments, such as tablet and PC [37, 47]. Nevertheless,
the directional effects remain unexplored in the context of 3D interac-
tion scenarios. Considering the disparities in interactivity between 2D
and 3D, as described in Sec. 2.3, previous results cannot be directly
applied to the VE based steering tasks. Therefore, it is necessary to
examine the directional effects further when the interaction patterns
and tasks undergo changes.

RQ2. How do the path features influence user behavior in barehand
steering tasks? The effect of finger occlusion has been effectively
demonstrated in different tasks where users interact with objects on a 2D
screen using their fingers [7]. However, traditional steering tasks often
utilize a mouse or a controller equipped with a small cursor to interact
with the object, which allows users to conduct the steering tasks without
occlusion or ambiguity [56, 58]. Thus, when the interactive methods
transition to finger-direct touch-based interaction in VEs, it becomes
essential to consider the potential impact caused by the characteristics
of barehand and investigate whether the previously proposed effects of
path characteristics, as described by the Steering Law, persist in this
scenario.

RQ3. If direction does indeed impact user steering performance,
then is there a specific behavioral paradigm corresponding to different
directions? In previous studies on pointing selection or 2D-based steer-
ing tasks, researchers have identified a sinusoidal relationship between
directions and movement time [47, 65]. This phenomenon is often
attributed to the interplay between the structure of the arm’s bones and
the constraints of the muscles [4]. However, with the transition from
2D to 3D interaction environments, characterized by greater interac-
tion freedom and increased demand for bodily movement, it remains
uncertain whether steering behaviors in 3D barehand-based scenarios
exhibit consistent patterns akin to the sinusoidal relationships observed
in previous research.

RQ4. If indeed different features of the path impact behavior, could
it be feasible to model the representation of these effects mathemati-

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on February 03,2025 at 16:07:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 11, NOVEMBER 20247110

cally? In previous research, both Fitts’ Law and the Steering Law have
proposed numerous extended models tailored for different application
scenarios, as discussed in Sec. 2. Therefore, we expect to explore
whether, if RQ1-RQ3 are confirmed in this study, it would be possible
to establish corresponding refinement models, enhancing the Steering
Law’s predictive and behavioral explanatory capacity and fostering a
more profound comprehension of user behaviors.

4 USER STUDY1: DATA COLLECTION

This study aims to attain comprehensive insights into user behaviors
and performance in the bare-hand-based steering task. Therefore, We
collected behavioral data across various categories, including move-
ment time, speed, success rate, and reentry times, across diverse path
configurations such as width, length, and directions.

4.1 Methods
4.1.1 Participants and Apparatus
Twenty-four participants (12 men, 12 women) were recruited from
a local university, representing diverse educational backgrounds (18
undergraduates, 2 master’s, and 4 PhD students). The participants’
ages ranged from 19 to 26, with a mean of 22.87 (SD = 1.15). Some
participants self-reported having a certain degree of shortsightedness;
therefore, we allowed them to wear glasses or contact lenses during the
experiment, ensuring optimal visibility of the objects in the scene (that
is, normal to corrected-to-normal eyesight). On average, participants
self-rated their familiarity with VR systems as 4.81 (SD = 1.63) on a
7-point Likert scale, where higher scores indicate greater familiarity.

The study employed the Quest Pro, which is equipped with a reso-
lution of 1800 × 1920 per eye, along with a horizontal field of view
(FoV) of 106◦ and a vertical FoV of 95.57◦. The default refresh rate,
90Hz, was consistently applied throughout the process. The experimen-
tal program was developed using C# in Unity3D (version 2022.3.01f)
alongside the SteamVR PlugIn (version 2.2.0). The program was de-
ployed on a Windows 11 PC featuring an Intel Core i9 processor and
an NVIDIA RTX 3090 graphics card. A three-meter USB-C cable
facilitated the connection between the headset and the PC.

4.1.2 Stimuli and Task
The study determined all the stimuli through a pilot study to ensure
optimal suitability. Specifically, 12 semi-transparent paths, each repre-
senting a distinct direction of movement, were situated 300 mm in front
of the participants’ headset [53]. Concurrently, a sphere, referred to as
the target ball, was affixed at the starting position of each path [33] (see
Figure 1 LEFT). Upon the commencement of each trial, the designated
path became opaque, accompanied by arrows indicating the direction
of movement required. Participants were then instructed to pinch and
steer the ball along the path from its initial position to the endpoint.
During the steering process, they could receive visual feedback regard-
ing the position of the target ball along the path, enabling them to
adjust their strategy accordingly, i.e., the tradeoff between speed and
accuracy [1]. Throughout the trials, participants were not allowed to
reset the process and restart it again within a single trial once it had
begun, regardless of their actual or perceived performance falling short
of their expectations [55].

4.1.3 Design and Procedure
The user study followed a 2 × 3 × 12 within-subjects design, incorpo-
rating 3 independent variables across a total of 72 distinct conditions:
path length A (350 mm and 450 mm), path width W (40 mm, 60 mm
and 80 mm) and steering direction θ (0◦ to 330◦, with an increment
step of 30◦).

The path length was defined as the distance from the starting position
to the end. Meanwhile, the path width refers to the diameter of the
target ball [33]. Additionally, The steering direction θ was determined
as the angle between the positive direction of the horizontal x-axis and
the steering path [53, 65] (see Fig. 1).

The study encompassed 6 blocks, comprising 6 combinations be-
tween A and W , arranged in a randomized order in the experiment.
Within each block (A×W ) contained 12 θ values, the sequence of θ

Fig. 1: A participant is steering the target ball (red sphere positioned
at the center) along the designated path (indicated by arrows), where
θ is defined as the angle formed between the direction of movement
and the positive direction of the x-axis (directly to the right of where the
participant is facing) (LEFT). A screenshot of the orthogonal first-angle
view from the experimental program, where the positive direction of the
x-axis coincides with the movement direction (θ = 0) (RIGHT).

was also randomized, and participants were required to repeat 5 times
in each condition ( 1 A× 1 W× 1 θ ). Finally, a total of 8640 trials
were collected from this study ( 2 A× 3 W× 12 θ × 5 repetitions × 24
participants)

Before the experiment, the participants were invited to complete a
questionnaire to provide their demographic information. Following
this, we introduced the VR headset and the task. They then wore the
headset and adjusted it to a comfortable position under the guidance
of a researcher. After the adjustment, participants commenced the
practice trials, which lasted approximately three minutes until they
felt familiar with the task and ready for the experiment. Subsequently,
they proceeded to the formal trials. Throughout the task, participants
were consistently instructed to prioritize both speed and accuracy while
maintaining a seated position in an immobile and non-rotating chair.

The entire study lasted approximately 30 minutes for each partici-
pant. Considering the potential impact of fatigue caused by repetitive
tasks [62] and the gorilla arm effect [20], which denotes users’ tendency
to experience fatigue when interacting with their arms in mid-air-based
interactions, we allowed them to take breaks between each block, ensur-
ing they were prepared before proceeding to the subsequent experiment.

4.1.4 Measurements
During the study process, our experimental program recorded four
categories of data for each trial, i.e., movement time, average movement
speed, success rate, and reentry times.

• Movement Time (MT): The cumulative time throughout the
entire steering process is one of the most commonly used met-
rics for evaluating users’ behaviors and performance in steering
tasks [1, 56].

• Average Movement Speed (V): Determined by dividing the
movement time by the path length, a higher speed indicates supe-
rior performance in the task [2, 19].

• Success Rate: Whether the user could steer the target ball without
any interruption during the individual trial. This metric finally
resulted in two states: success or failure.

• Reentry Times: The number of reentries between the finger
and the target ball, reflecting the count of attempts made by
participants to complete each trial. It may reveal the level of
steering difficulty across various directions, with a higher count
corresponding to more unsuccessful attempts and vice versa [4].

4.2 Results
Before data analysis, we employed two approaches to remove outliers.
First, we excluded 214 trials, which accounted for 2.47% of the to-
tal number of trials, due to movement times exceeding 10 seconds.
Subsequently, 114 (1.31%) trials were eliminated as they exceeded
three times the standard deviations from the mean results regarding
movement time or speed.
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Fig. 2: Movement time (MT ) for the variables that showed a significant
main effect. The error bars show the standard error. The orange bars
represent the quadrant boundary directions of the right (θ = 0), the
upward (θ = 90), the left (θ = 180), and the downward (θ = 270). The
table shows the p-values within each row indicating significant differences
between quadrant boundary directions (number with orange at leftmost
column) and others, with no significant differences observed between
non-quadrant boundary directions. ‘***’, ‘**’, ‘*’, and ‘n.s.’ indicate p <
0.001, p < 0.01, p < 0.05 and without statistical significance with a p-value
less than 0.05.

In the following section, repeated-measures ANOVA (RM-ANOVA)
tests were conducted to examine how the factors of path width, length,
and direction affect movement time ( Sec. 4.2.1), average movement
speed ( Sec. 4.2.2), success rate and reentry times ( Sec. 4.2.3). We
then provide our discussion and interpretation of the results ( Sec. 4.3).
Throughout the tests, the Greenhouse-Geisser was used to adjust the
degrees of freedom if the assumption of sphericity was not met. Bon-
ferroni corrections were used for post-hoc pairwise comparisons. All
the repetitions were treated as an independent data point throughout
the analysis process.

4.2.1 Movement Time

We found θ (F11,253 = 15.359, p < 0.001,η2
p = 0.400), A (F1,23 =

128.517, p < 0.001,η2
p = 0.848), and W (F2,46 = 350.839, p <

0.001,η2
p = 0.938) had significant main effects on movement time.

when taking into account the interactions among these factors θ ×A
(F11,253 = 2.531, p = 0.005,η2

p = 0.099), θ ×W (F9.204,211.701 =

2.817, p = 0.004,η2
p = 0.109) and A×W (F1.999,45.987 = 17.289, p <

0.001,η2
p = 0.429) also demonstrated a significant influence on move-

ment time.
In relation to the factor θ , significant variations were noted among

different conditions. Interestingly, these differences were only evident
when comparing directions at quadrant boundaries (0◦,90◦,180◦,270◦)
to those not at quadrant boundaries or among quadrant boundary di-
rections themselves. This suggests that no significant differences were
observed among directions that were not at quadrant boundaries. Specif-
ically, at 0 degrees, significant difference emerged when compared to
30 (∆ = −630.341, p < 0.001), 60 (∆ = −677.768, p < 0.001), 120
(∆ = −655.688, p = 0.001), 150 (∆ = −641.327, p < 0.001), 210
(∆ = −574.338, p < 0.001), 240 (∆ = −440.627, p = 0.008), and
330 (∆ = −452.796, p = 0.013) degrees. At 90 degrees, meaningful
distinctions surfaced in contrast to 60 (∆ = −377.138, p = 0.045),
120 (∆ = −355.058, p = 0.047), 180 (∆ = 311.039, p = 0.041), and
270 (∆ = 431.268, p = 0.017) degrees. At 180 degrees, substantial
variations were evident in relation to 30 (∆ = −640.750, p < 0.001),
60 (∆ = −688.177, p < 0.001), 90 (∆ = −311.039, p = 0.041), 120
(∆ = −666.097, p < 0.001), 150 (∆ = −651.736, p < 0.001), 210
(∆ =−584.747, p < 0.001), 240 (∆ =−451.036, p = 0.001), and 330
(∆ =−463.205, p = 0.049) degrees. In terms of 270 degrees, the short-
est time was observed among all directions, with pronounced dispar-
ities compared to 30 (∆ =−760.979, p < 0.001), 60 (∆ =−808.406,
p < 0.001), 90 (∆ = −431.268, p = 0.017), 120 (∆ = −786.326,

Fig. 3: Average movement speed (V ) or the variables that showed a
significant main effect. The error bars show the standard error. The
orange bars represent the quadrant boundary directions of the right
(θ = 0), the upward (θ = 90), the left (θ = 180), and the downward (θ =
270). The table shows the p-values within each row indicating significant
differences between quadrant boundary directions (number with orange
at leftmost column) and others, with no significant differences observed
between non-quadrant boundary directions. ‘***’, ‘*’, and ‘n.s.’ indicate
p < 0.001, p < 0.05 and without statistical significance with a p-value less
than 0.05.

p < 0.001), 150 (∆ = −771.965, p < 0.001), 210 (∆ = −704.976,
p < 0.001), 240 (∆ = −571.265, p < 0.001), 300 (∆ = −578.840,
p < 0.001) and 330 (∆ =−583.433, p = 0.006) degrees.

Concerning factor A, it can be observed that when A is 350 mm,
the time spent is significantly less than 450 mm (∆ =−708.012, p <
0.001). Additionally, when the value of W is set at 40 mm, the time
expended is significantly higher compared to when it is set at 60 mm
(∆ = 1809.587, p < 0.001) and 80 mm (∆ = 2518.665, p < 0.001).
The same pattern is witnessed when comparing the values of 60 mm
and 80 mm (∆ = 709.078, p < 0.001). These results were visualized
in Fig. 2.

4.2.2 Average Movement Speed
The significant effect had found at θ (F11,253 = 9.745, p < 0.001,η2

p =

0.298), W (F2,46 = 215.445, p < 0.001,η2
p = 0.904) and θ × W

(F22,506 = 1.844, p = 0.011,η2
p = 0.074).

Specifically, when examining pairwise comparisons, we observed a
significant increase in average movement speed at a θ of 0 compared
to 30 (∆ = .034, p = 0.027), 60 (∆ = .035, p = 0.040), 90 (∆ = 0.019,
p = 0.019), 120 (∆ = .045, p = 0.005), 150 (∆ = .045, p = 0.003),
and 210 (∆ = .042, p = 0.023) degrees. A contrary trend was noted
at 90 degrees, where the average movement speed was significantly
lower than that of 0 (∆ =−0.031, p = 0.019), 180 (∆ =−0.024, p =
0.001), and 270 (∆ = −0.042, p < 0.001) degrees. Furthermore, an
increasing trend was evident at 180 degrees when compared to 30
degrees (∆ = 0.028, p = 0.002), as well as in comparison to 60 (∆ =
0.029, p = 0.020), 90 (∆ = 0.024, p = 0.001), 120 (∆ = 0.038, p <
0.001), 150 (∆ = 0.038, p < 0.001), 210 (∆ = 0.036, p < 0.001), and
240 (∆ = 0.031, p = 0.015) degrees. When the angle was set to 270, a
similar trend to that observed at 0 and 180 occurred, in contrast to the
observations made at 30 (∆ = 0.045, p = 0.005), 60 (∆ = 0.046, p <
0.001), 90 (∆ = 0.042, p < 0.001), 120 (∆ = 0.056, p < 0.001), 150
(∆ = 0.056, p < 0.001), 210 (∆ = 0.053, p < 0.001), 240 (∆ = 0.048,
p < 0.001), and 300 (∆ = 0.031, p = 0.049) degrees.

In terms of factor W , average movement speed at 40 mm existed
statistical significance by falling behind those at 60 mm (∆ =−0.080,
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Fig. 4: Success rate for the variables that showed a significant main
effect. The error bars show the standard error. ‘*’ and ‘***’ indicate
p < 0.05 and p < 0.001, respectively. All effects demonstrated statistical
significance with a p-value of at least less than 0.05. The orange bars
represent the quadrant boundary of right (θ = 0), the upward (θ = 90),
the left (θ = 180), and the downward (θ = 270).

Fig. 5: Reentry times for the variables that showed a significant main
effect. The error bars show the standard error. ‘*’, ‘**’, and ‘***’ indicates
p < 0.05, p < 0.01 and p < 0.001, respectively. The orange bars represent
the quadrant boundary of right (θ = 0), the upward (θ = 90), the left
(θ = 180), and the downward (θ = 270).

p < 0.001) and 80 mm (∆ =−0.166, p < 0.001). The same trend was
discovered between 60 mm and 80 mm (∆ =−0.085, p < 0.001). The
average movement speed results are shown in Fig. 3.

4.2.3 Success Rate and Reentry Times
Results of RM-ANOVAs showed that A (F11,253 = 57.781, p <

0.001,η2
p < 0.715) and W (F2,46 = 8.646, p < 0.001,η2

p = 0.273) had
significant main effect on success rate. In the post-hoc pairwise com-
parison analysis of success rate, for the factor A, a notable improve-
ment was noted when A was set at 350 mm as compared to 450 mm
(∆ = 7.9%, p = 0.025) (see Fig. 4). Furthermore, in the factor of W ,
it was observed that larger values of W correlated with higher success
rates. For instance, when W was 80 mm, the success rate was signifi-
cantly higher compared to when it was 60 mm (∆ = 4.3%, p = 0.029)
or 40 mm (∆ = 4.8%, p < 0.001).

In terms of reentry times, factor A (F1,23 = 6.514, p = 0.018,η2
p =

0.221) and W (F2,46 = 3.118, p < 0.001,η2
p = 0.390) demonstrates a

significant main effect independently, while the interaction effect be-
tween A and W (A×W ) exhibits statistical significance (F1.677,38.569 =

19.507, p < 0.001,η2
p = 0.459). Following post-hoc pairwise compar-

isons, we observed that when A was set to 350 mm, the reentry times
were significantly lower than when it was set to 450 mm (∆ =−0.162,
p = 0.018). Additionally, in terms of factor W , smaller values resulted

in higher reentry times. Specifically, when W was set to 40 mm, the
number of repetitions was notably higher compared to when it was 60
mm (∆ = 0.391, p = 0.014) or 80 mm (∆ = 0.616, p < 0.001). This
trend was also consistently demonstrated between 60 mm and 80 mm
(∆ = 0.226, p = 0.001) (see Fig. 5).

4.3 Discussion
4.3.1 Effects of Direction on Steering Performance in Immersive

VEs (RQ1)
Statistical analysis (RM-ANOVA) revealed a significant influence of
movement direction on user performance, particularly in movement
time and average movement speed. However, this factor did not sig-
nificantly affect success rate and reentry time. Specifically, the results
of pos-hoc pairwise comparison analysis indicate that movement di-
rection aligned with quadrant boundaries (0◦,90◦,180◦,270◦) tend to
perform better in terms of movement time compared to other directions
(see Sec. 4.2.1). This trend is also reflected in the average move-
ment speeds, where these directions consistently achieve higher speeds
(see Sec. 4.2.2). Additionally, a similar pattern is observed in other met-
rics such as success rates and reentry times (see Sec. 4.2.3), which did
not present a statistically significant effect, but still relatively suggest-
ing smoother steering experiences with fewer interruptions. It can be
inferred that participants have certain interaction strategies tailored to
specific directions in steering tasks, effectively balancing efficiency and
accuracy. For instance, they may fine-tune movement time and speed
differently across various directions, with the goal of accomplishing
tasks quickly while maintaining precision.

Moreover, our analysis revealed that among the four quadrant bound-
aries, the direction with the longest movement time is 90 degrees, while
the shortest is 270 degrees (P = 0.017) (see Fig. 2). Similarly, this
pattern is evident in average movement speed, indicating that the 90-
degree direction is the slowest among the four quadrant boundaries,
significantly slower than the speed in the 270-degree direction (the
fastest) (P < 0.001) (see Fig. 3). However, regarding success rate
and reentry time, although 270 degrees exhibited a higher success rate
and fewer reentries compared to 90 degrees, there was no consistent
trend suggesting that 90 degrees performed the worst while 270 degrees
performed the best (see Fig. 5). Overall, a trend can be observed
where efficiency tends to be higher in downward movements (from
30 to 150 degrees) than in upward movements in terms of movement
time and average movement speed. This pattern could be attributed to
inertia and gravitational forces acting on the hand during downward
movement [8, 13]. Participants often relaxed their arms to control the
descent rate, leading to faster speeds and shorter movement times.

Interestingly, our findings contrast with previous research, particu-
larly in terms of movement time. Previous work, such as Murata et
al. [37], suggested that vertical directions (90 and 270 degrees) tend to
be less efficient than horizontal movements (0 and 180 degrees), which
exhibit the lowest performance levels across all directions. Contrary to
this, the findings of Study 1 demonstrated that horizontal movements
did not show the best performance. Instead, the optimal performance
was observed in downward movements (270 degrees), followed by
horizontal (0 and 180 degrees) and upward movements (90 degrees).
The Longer times and slower speeds were evident in movements along
the diagonal directions. We attribute these contrary to to the ergonomic
characteristics of the arm and hand structure, as well as the attentional
demands inherent in barehand-based mid-air interactions across differ-
ent directions, as supported by previous research [40, 43]. Specifically,
diagonal movements require intricate coordination among the muscle
groups responsible for shoulder, elbow, and wrist actions, a complex-
ity surpassing that needed for vertical or horizontal movements [12].
Additionally, from a neurological perspective, executing diagonal move-
ments is more demanding as it involves extensive processing of sensory
data, including proprioceptive feedback and visual cues, to maintain
precision and alignment with the intended path [48].

4.3.2 Effects of Path Characteristics on User Behavior (RQ2)
In line with the original Steering Law [1], we found that increased path
length correlates with longer time spent, lower success rates, and higher
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reentry times. Moreover, our empirical analysis results demonstrate a
statistically significant main effect of path width on movement time,
average movement speed, success rate, and reentry times.

Specifically, in terms of movement time, significant effects were ob-
served regardless of path width and length (both P < 0.001). However,
concerning average movement speed, only path width demonstrated
a statistically significant impact on the outcome (P < 0.001) that was
consistent with previous works [22]. Regarding success rate, both
width and length exhibited similar performances (both P < 0.001).
Nonetheless, it is worth noting that while width (p < 0.001) and length
(p = 0.018) all demonstrated significant effects on reenter times, the
impact of width appeared to be more pronounced. This phenomenon
was further corroborated by pairwise comparisons among different
widths, revealing significant differences between each condition. We
attribute this phenomenon to the occlusion effect caused by the fingers.
In our task design, users are required first to select the object (ball) and
then steer it from the start position to the end. Therefore, the entire
interaction process can be divided into two steps: pointing selection
and steering. Initially, smaller objects may introduce more selection dif-
ficulty during the selection phase due to finger occlusion, as described
in previous work [7]. Then, within the steering process, the fingers
often obscure a significant portion of the ball, leading participants to
struggle to discern whether they are properly gripping it. This causes
them to deviate their fingers from the intended position easily. Thus,
as the width of the ball increases, occlusion decreases, resulting in a
notable reduction in reentry times.

5 MODELING AND FITTING

In the last section, we elucidated the directional effects on user behav-
ioral patterns and steering task performance, including movement time,
average movement speed, success rate, and reentry times. In light of the
substantial effects observed, this section engages in a comprehensive
analysis to encapsulate the effect through mathematical formulations
(see Section 5.1). Subsequently, leveraging the formulated directional
effects, we introduce an extended Steering Law model, termed the Sθ
Model (see 5.2). Finally, we evaluated the proposed model using the
data collected from Study 1, confirming its capabilities in predicting
movement time and explaining user behavior patterns (see 5.3.2).

5.1 Formulating the Effect of Direction
Section 4.2.1 presents results indicating a statistically significant re-
lationship between θ and MT . The observed pattern illustrates that
movement time reaches its minimum values when θ aligns with the
quadrant boundary directions, which exhibits a strong periodicity, con-
sistent with a sine function with a periodicity of π

2 (see Figure 6).
Based on the observed pattern, we propose a new formula, which is a
revision of the original sine function, name θ e f f ect , aims to depict the
directional effects:

θ e f f ect = asin
(

4θ − π
2

)
+b (13)

Within the formula, the coefficients a and b are determined empirically
based on regression results. The coefficient 4 signifies that the period
of the wave is one-fourth of a standard sine function, indicating that
the waveform repeats itself every π

2 . The term − π
2 in the equation

represents the phase offset, denoting the horizontal displacement of
the waveform relative to the origin or the standard sine wave. In this
context, it indicates that the waveform is shifted to the right by − π

2 ,
implying that the starting point aligns with θ = 0 and is currently at the
lowest value within the period.

Based on the formula of θ e f f ect , we fitted the data obtained from
study 1 (see Fig. 6). The coefficients are as follows: a = 350.134,
b = 2803.343, and R2 = 0.808. The amplitude a = 350.134 in the
sine function indicates the waveform’s vertical span, representing the
distance between its peak and trough (2a). This value is attributed to
the variance between the quadrant boundary directions and the cardinal
directions, which is consistent with the data observed in our user study.
Furthermore, the vertical displacement b = 2803.343 signifies a shift

Fig. 6: The regression analysis showing the relationship between the
variable θ (in radians), represented by purple circles, and the fitted
regression curve (θ e f f ect ), which is depicted in orange, on MT .

in the sine function graph relative to its original position by b units
vertically. Notably, the positive value of b suggests an upward shift,
aligning with the observed data.

In summary, the effect function demonstrated a robust fit and did
not show any indications of overfitting, given its simple structure with
only two interpretable coefficients. Moving forward, we integrated
our effect function θ e f f ect into the original Steering Law, introducing
an extended Steering Law model. This model is intended to precisely
predicate behavioral patterns (MT ), even when multiple movement
directions are present and various path configurations are involved in
the steering task.

5.2 Model Formulation
Before formulating the extended model, we examined the performance
of the original Steering Law to assess its suitability for tasks involving
diverse directions. Our empirical results showed that when we applied
the conventional Steering Law to all 72 conditions (comprising 3W ×
2A×12D), the fit was not as strong as expected, resulting in an R2 value
of only 0.850. However, when we tailored the Steering Law to each
direction individually, we discovered that all 12 directions exhibited
a robust fit, resulting in an outstanding average R2 of 0.982 with a
negligible standard deviation of 0.009.

Hence, we introduced a novel extended model in light of the sub-
optimal fitting results obtained and the observed θ e f f ect . In the mod-
eling process, to maintain model simplicity and align with prior re-
search [22, 37, 47], we treated θ as independent of both A and W . As
a result, we separately incorporated θ into the existing Steering Law,
culminating in the Steering Theta Model (Sθ model):

SθModel = MT = a+b
A
W

+ cθ e f f ect

= a+b
A
W

+ csin
(

4θ − π
2

) (14)

Where a, b, and c are empirical values determined through regression.

5.3 Model Evaluation
5.3.1 Baseline Model and Comparison Metrics
To identify a model that effectively captures the characteristics of
behavioral data while maintaining an appropriate level of simplicity,
ensuring the credibility and utility of our results, we utilized three
statistical metrics to evaluate and select the optimal model: the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC),
and the coefficient of determination (R2). AIC and BIC balance model
complexity and fit, preventing overfitting. AIC considers parameters
and likelihood, while BIC adds a penalty for sample size. Lower AIC
and BIC values indicate better performance of the model. R2 measures
how well the model explains variance in the dependent variable, with
higher values indicating better fit.

5.3.2 Result of Evaluation
Tab. 1 lists the results of the linear regression. Two models, the

conventional Steering Law and the Sθ model, were tested. The results
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Fig. 7: Movement time (MT) model fitting across all conditions (N = 72)
using the conventional Steering Law model and Sθ model.

demonstrate that the Sθ model performed best across all of the three
metrics. Specifically, the Sθ model exhibits outperformed fitness in
R2 than the baseline model (∆ = 0.13). Both the AIC (∆ =−105.933)
and BIC (∆ = −103.663) confirm that our model achieves a better
balance between fit and simplicity compared to the baseline model.
Additionally, in terms of the significant contributors of coefficients,
both a and b are significant in both models, while c is also significant
in the Sθ model (p < 0.001).

5.4 Discussion
5.4.1 Formulation The Effect of Direction on Human Behavioral

Pattern (RQ3)
Our results align with prior research, displaying significant periodicity
(sine) on movement time. However, the period amplitude we observed
is π

2 , which deviates from the common periods of π or 2π reported in
the literature [21,37,47,65]. In addition, since the minimum movement
times consistently coincide with the quadrant boundary directions,
we also shifted the sine function by π

2 radians to better align with
the observed behavioral patterns. Finally, We formulated the θ e f f ect

(refer to Eq. (13)) and successfully applied it to the dataset acquired
from Study 1, attaining a substantial degree of fit (R2 = 0.808) and
confirming its strong interpretability of directional effects on behaviors.

5.4.2 Modeling User behavior in Steering Task (RQ4)
According to the sinusoidal relationship unveiled by θ e f f ect , we pro-
posed the extended Steering Law model that incorporates the directional
effects within the conventional model, termed the Sθ model. We then
evaluated the performance of our Sθ model with three metrics (R2,
AIC, and BIC) and compared it to the Steering Law model (baseline).

The results indicated that in terms of fitness (R2), the Sθ model
outperformed our baseline. As plotted in Fig. 7 LEFT, the baseline
model lacked the capability to represent directional effects. Each value
(determined by A

W ) on the x-axis corresponds to twelve results where
representing various directions from 0 to 330 degrees on the y-axis.
Moreover, the trend of increased decentralization, caused by larger
values of A

W indicating greater difficulty, was observed. This tendency
aligns with previous works suggesting that directional effects become
more pronounced as the task difficulty increases [47, 64]. In contrast
to the baseline model, the Sθ model exhibited well-fitted results (refer
to Fig. 7 RIGHT), showcasing its strong predictive capability for steer-
ing tasks involving various movement directions. Furthermore, from
the Tab. 1, both AIC and BIC suggest that Sθ model exhibits superior
performance in both fit quality and model complexity compared to the
baseline. Briefly, despite the additional complexity introduced by the
extra effect parameter in the Sθ model, it substantially enhances data
fit, thus outweighing the complexity penalty.

This conclusion is further supported by the parameter estimation,
where the coefficient of θ e f f ect (c) demonstrated significant contribu-
tions to the final results in the Sθ model (p < 0.001). Additionally,
the 95% confidence interval (from 434.4 to 594.1) for parameter c
excludes zero, further indicating a statistically significant relationship
between θ and MT , implying its observed effect is not an incidental
byproduct of random variations but rather a fundamental characteristic
of the phenomenon under scrutiny.

5.4.3 Summary

Our empirical evidence confirmed that the θ e f f ect exhibits sinusoidal
periodicity, but its period does not align with that observed in previous
studies due to variations in task and interactive environments. Subse-
quently, we proposed the Sθ model, which integrates the θ e f f ect into
Steering Law. A thorough analysis revealed its superiority over the
original Steering Law across all metrics and discussed the contributions
for each coefficient, further confirming the importance and validity of
incorporating the θ e f f ect into Sθ model.

6 UTILITY OF THE PROPOSED MODEL

To further validate the applicability of our model, we conducted another
user study using different devices to collect behavioral data within
steering tasks involving different movement directions. We then applied
the Sθ model to predict movement time and average movement speed
and validate the model’s performance by comparing the predicted
values with the collected data.

6.1 Participants and Apparatus

Twelve participants who had not participated in Study 1 were recruited
from the local university in this study (6 males and 6 females; aged
between 19 and 26, M = 22.10, SD = 1.762, 4 undergraduate students
and 12 postgraduate students). Half of the participants have prior
experience with VR HMDs. All of them reported they had normal or
corrected-to-normal vision and were able to see all the objects clearly
during the experiments. In terms of the device, we employed a different
VR HMD compared to Study 1 to mitigate potential biases introduced
by the experimental setting. Thus, we opted for the Meta Quest 3,
which, although inferior in hardware performance compared to the
Quest Pro, is more widely adopted by users. This device features a
resolution of 2064×2208 per eye, a standard refresh rate of 90 Hz, and
a FoV of 110 degrees horizontally and 96 degrees vertically.

7 TASK DESIGN AND PROCEDURE

We employed a within-subjects design with three factors: Path Length
(A), Path Width (W ), and Movement Directions (θ ). Given our model
incorporates θ e f f ect independently into the original Steering Law, varia-
tions in A and W do not affect the performance of our model. Therefore,
the settings for A and W remained consistent with Study 1 to ensure
simplicity and increased comparability. Regarding θ , as indicated by
θ e f f ect , the longest movement time was expected to occur within the
45-degree interval (45, 135, 225, and 315 degrees) across all directions.
Thus, to validate our observed results further, we adjusted the interval
from 30 degrees in study 1 to 45 degrees.

The experimental procedure and condition order of these three fac-
tors were identical to those described in the first user study in 4.1.1.
Therefore, a total of 2880 trials (12 participants × 2 A × 3 W × 8 θ ×
5 repetitions) were collected after this study.

7.1 Predicting Movement Time

We pre-processed the outliers using the same method as in the first
study. 79 trials (which accounts for 2.743% of the total data) were
removed. Then, similar to Sec. 5, we employed the same approach and
metrics to evaluate the performance of the baseline and our model.

As listed in Tab. 2, the Sθ model exhibited the best performance
across all metrics. The results empirically proved that the revision of
θ values did not affect the performance of our model. In other words,
irrespective of the movement direction, our model exhibits a robust
capability to interpret user behavior patterns and predicate movement
time across various orientations.

7.2 Predicting Movement Speed

Drawing from previous research [22], a linear correlation exists be-
tween movement time and average movement speed, expressed as
V = A

MT . Hence, the formulation for average movement speed in the
original Steering Law can be represented as V = a+bW . Accordingly,
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Table 1: Models fitting results for predicting MT , including r2 (where higher values indicate better fit), AIC, and BIC (where lower values indicate
better performance). The empirical values a, b, and c are estimated regression coefficients with 95% CIs [lower, upper]. Significant contributors are
indicated by ’***’ for p < 0.001. r2, AIC and BIC in bold are the best values among them.

Source Model a b c r2 AIC BIC

Baseline [1] a+b A
W

-843.254*** 491.736*** 0.850 1082.465 1087.029[-1185.8, -500.7] [446.4, 536.9]

Sθ model a+b A
W + cθ e f f ect -842.143*** 491.773*** 514.353*** 0.958 976.532 983.366[-1029.5, -654.7] [466.9, 516.4] [434.4, 594.1]

Table 2: Models fitting results for predicting MT , including r2 (higher
values indicate better fit), AIC, and BIC (lower values indicate better
performance). r2, AIC, and BIC in bold are the best values among them.

Model r2 AIC BIC

MT Original Steering Law 0.808 591.207 594.949
Sθ model 0.910 521.242 526.856

V Original Steering Law 0.748 -311.197 -307.417
Sθ model 0.889 -377.504 -371.890

the Sθ model can be reformulated as:

V =
A

a+b A
W + csin

(
4θ − π

2

)
(15)

These two models were employed to scrutinize further and validate
our proposed model’s efficacy. Consistent with the results presented
in Sec. 7.1, regarding average movement speed prediction, the Sθ
model consistently outperformed the baseline across all metrics.

8 SUMMARY OF FINDINGS AND RECOMMENDATIONS

Through the first user study, we collected the user behavioral data to
gather a better understanding of how different factors, including path
width, length, and directions, can affect user performance and behavior
patterns in the steering task. The empirical data confirmed a signif-
icant relationship between path characteristics and four key metrics:
movement time, average movement speed, success rate, and reentry
times, where the effects of θ that aligned with quadrant boundary direc-
tions (0, 90, 180, and 270 degrees) exhibited significantly shorter time
duration and faster speeds (see Sec. 3 RQ1). Moreover, our findings
demonstrated that in 3D VR interactions, small targets could result in
decreased interaction precision and accuracy due to the finger occlusion
effect, mirroring challenges observed in 2D environments. We further
identified the consistency of observed trends in terms of A and W with
previous works to ensure the feasibility of modeling user performance
through extending the original Steering Law that incorporated the effect
of θ within barehand steering tasks (see Sec. 3 RQ2).

According to the results from the first user study, we formulated the
effect of θ (θ e f f ect ), which demonstrates a sinusoidal pattern accompa-
nied by a unique periodicity ( π

4 ) different from previous literature in
varying contexts (see Sec. 3 RQ3). Next, an extended model (Sθ model)
was built by integrating the θ e f f ect into the conventional Steering Law.
Sθ model then achieved strong capabilities of accurately predicting
movement time (R2 = 0.958), representing a 10.8% improvement in
R2 and enhancements of 9.7% and 9.5% in AIC and BIC, respectively,
compared to the conventional Steering Law (see Sec. 3 RQ4).

Moreover, we validated the utility of our proposed model through
a user study involving revisions to devices and path features. The
Sθ model was used to predict movement time and average movement
speed, which was derived by deforming the Sθ model. The results
demonstrated that, irrespective of path configuration and devices used,
the Sθ model always exhibited the highest predictive accuracy for both
movement time and speed across all metrics.

Finally, based on the aforementioned findings, we propose two
recommendations for 3D interface and interaction designers: Firstly,
prioritize movement along quadrant boundary directions (0, 90, 180,
and 270 degrees) when designing tasks or interactive techniques reliant
on steering within virtual environments. This prioritization aims to en-
hance interaction efficiency and performance. Secondly, it is necessary
to ensure that interactive elements, particularly in steering tasks, are
adequately sized when designing for barehand-based interactions. They
should be at least as large as the width of the user’s interacting fingers.
Neglecting this aspect could lead to finger occlusion effects, reducing
interaction efficiency and leading users to repeat tasks multiple times,
resulting in a suboptimal experience.

9 LIMITATIONS AND FUTURE WORK

We identified some limitations and possible avenues for future research.
First, while our model has achieved promising results regarding typical
steering tasks with only circular shape targets and constant straight
paths in a controlled simplified background, we plan to extend our find-
ings to real application scenarios with arbitrary target shapes, curved
path characteristics, and complex backgrounds. Second, we employed
a controlled distance between the user and the path in our user study
design with fixed positions. While this approach was suitable for gath-
ering behavioral data in a controlled user study environment, it may not
fully represent real-world target steering scenarios. In many instances,
users are required to steer targets using their hands at various distances
and body positions, such as sitting, standing, or walking. It would
be interesting to investigate whether behavioral patterns change under
different hand movement depths and body positions during the steer-
ing process. Third, previous studies suggest inconsistent behavioral
mechanisms may exist between people’s dominant and non-dominant
hands, as well as between left-handed and right-handed individuals
during movement tasks. To better mirror real-world applications, all
participants in our study were instructed to use their dominant hand.
Additionally, randomizing our participant recruitment resulted in all
participants being right-handed. This approach did not account for
the behaviors associated with non-dominant hand usage and led to the
underrepresentation of left-handed individuals in our participant pool.
Consequently, this aspect might limit the optimal performance of our
model in fully representing certain populations or application scenarios.
Our planned future exploration will involve a wider sample population.

10 CONCLUSION

This work empirically investigated how direction and path character-
istics (width and length) influence user behavior and performance in
barehand-based steering tasks within 3D virtual environments. Lever-
aging the gathered behavioral data, we introduced an extended model
of the Steering Law, termed the Sθ model, specifically designed to
predict movement time across various directions in steering tasks. Our
evaluations validated the superior predictive capabilities of the pro-
posed models compared to existing works. Additionally, to mitigate
the risk of overfitting and further validate the model’s applicability, we
conducted a follow-up user study with adjusted values of movement
directions and utilized different devices. The Sθ model consistently
outperformed the baseline across all metrics, reaffirming its efficacy.
Overall, our findings contribute to a deeper understanding of user be-
havioral patterns in virtual environments, particularly regarding object
manipulation or interface translation along designated paths.
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