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Abstract—We conduct two in-lab experiments (N=93) to eval-
uate the effectiveness of Gantt charts, extended Gantt charts,
and stringline charts for visualizing fixed-order event sequence
data. We first formulate five types of event sequences and define
three types of sequence elements: point events, interval events,
and the temporal gaps between them. Our two experiments focus
on event sequences with a pre-defined, fixed order and measure
task error rates and completion time. The first experiment shows
single sequences and assesses the three charts’ performance in
comparing event duration or gap. The second experiment shows
multiple sequences and evaluates how well the charts reveal tem-
poral patterns. The results suggest that when visualizing single
fixed-order event sequences, 1) Gantt and extended Gantt charts
lead to comparable error rates in the duration-comparing task; 2)
Gantt charts exhibit either shorter or equal completion time than
extended Gantt charts; 3) both Gantt and extended Gantt charts
demonstrate shorter completion times than stringline charts; 4)
however, stringline charts outperform the other two charts with
fewer errors in the comparing task when event type counts are
high. Additionally, when visualizing multiple point-based fixed-
order event sequences, stringline charts require less time than
Gantt charts for people to find temporal patterns. Based on these
findings, we discuss design opportunities for visualizing fixed-
order event sequences and discuss future avenues for optimizing
these charts.

Index Terms—Gantt chart, stringline chart, Marey’s graph,
event sequence, empirical study.

I. INTRODUCTION

IXED-ORDER event sequence is a type of sequence data

that exists in various scenarios, such as industrial logs
of products in assembly lines [1]-[5], traveling records of
vehicles in public transportation [6]-[9], cascading effects of
disaster [10], and biological process like apoptosis [11]. In
these event sequences, the order of events is predefined and
remains consistent in each sequence. This stands different from
sequences where events occur in an unpredictable order [12]-
[17]. To illustrate, consider a scenario of manufacturing a
particular product within an industrial workflow. Each stage
in this process can be considered as an event that needs to be
carried out in a predefined order to complete the process. In
this context, the production process of an individual product
is a fixed-order event sequence. Despite the fixed order, the
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identical steps in different sequences happen at different times-
tamps and last for different durations. Visualizing such event
sequences can provide valuable insights into understanding,
troubleshooting, and optimizing production processes.

Our work thus focuses on fixed-order event sequence visu-
alization. The literature on visualizing fixed-order event se-
quences is extensive, producing timeline-based visualizations
that can encode event types, timestamps, and duration, such
as Gantt chart [8], [18] and stringline chart (also known as
Marey’s graph) [1], [2], [6]. As fixed-order event sequences are
a subset of general event sequences where the event orders are
inconsistent or random, other timeline-based visualizations for
general sequences such as extended Gantt chart (a variant of a
Gantt chart in the detailed view in Monroe et al.’s studies [19]—
[21]) can also be used to visualize fixed-order event sequences
since it can present the event type and temporal information.
These timeline-based visualizations can be applied to temporal
regulation finding [8], [19], efficiency analysis [2], [6] and
visual diagnostics [1], underscoring their strengths in various
usage scenarios. Therefore, it is important to understand their
performance and select the most appropriate visualization.
Understanding them is also a fundamental step to developing
more efficient visualization methods in the future.

In this work, we compare three timeline-based visualizations
designed for representing fixed-order event sequence data
(Fig. 1): Gantt chart (Gantt), extended Gantt chart (ExtGantt),
and stringline charts (Stringline). We compare their performance
across various scenarios. These visualizations are commonly
used for fixed-order event sequence data or event sequences
in general [1], [2], [6], [8], [18]-[22]. Other existing event se-
quence visualizations [22], such as Hierarchy-based, Sankey-
based, and Matrix-based, lack the capability to simultaneously
show essential elements in fixed-order event sequences (e.g.,
event type, duration, and timestamps). Thus, these alternatives
are not considered within the scope of our work.

To begin, we reviewed the literature and summarized five
types of fixed-order event sequences, taking into account
point events, interval events, and event gaps (Sec. III) as
three essential elements. Next, we surveyed related studies
and conducted a pilot study to select appropriate tasks for
the experiment, and finally chose duration-comparison and
temporal-pattern-finding as the two experimental tasks. Our
experimental variables include visualization, sequence element
type, event type count, the number of sequences, and temporal
pattern. More specifically,

« We conducted two in-lab experiments (N=93) to evaluate
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the effectiveness of Gantt charts, extended Gantt charts, and
stringline charts in visualizing fixed-order event sequence
data. The first experiment examined the effectiveness of
the three charts in supporting duration-comparison tasks
within a single event sequence. The second experiment
explored the advantages and disadvantages of these visual-
izations for temporal patterns (i.e., timestamp and duration
patterns) in multiple event sequences.

« We reported the following quantitative results for fixed-
order event sequence data. 1) Overall, Stringline required
more completion time than Gantt and ExtGantt in the task
that compared the event duration in a single sequence. 2)
No significant differences were observed between Gantt and
ExtGantt in terms of both error rate and completion time. 3)
Stringline required less time than Gantt in finding temporal
patterns in multiple sequences.

o We summarized design suggestions for choosing appropriate
charts for fixed-order event sequence data, which can assist
future work in selecting suitable visualizations for the
specific scenarios.

II. RELATED WORK

We review visualizations used in previous event sequence
studies [22]-[24] to identify those charts which can simul-
taneously present scheduled event sequences’ temporal infor-
mation, including event types, key timestamps, and duration.
After the survey, we categorize these charts into two groups:
Gantt chart-like and stringline-like, based on how fixed-order
events’ types is encoded.

Gantt chart displays time on a timeline axis and uses
categorical colormaps or textures to represent event types
(Fig. 1 (b)). Each colored rectangle (or line) represents a single
event, and the rectangle width represents the event duration. A
row of rectangles represents a sequence of fixed-order events,
and the space between two rectangles shows the time interval
between two adjacent events. Initially designed for tracking
the project progress [25], [26], Gantt charts are widely used
in project planning [20] and schedule comparison [27], [28].
Jo et al. [8] later improved the scalability of the Gantt chart
to visualize large volumes of manufacturing data and flight
schedules by reordering the sequence based on event type
similarity and grouping events with similar durations. Their
work showed that Gantt chart-like visualization performs well
when presenting a large number of event sequences through
algorithms and interactions.

On the other hand, a few studies proposed and utilized
the variants of Gantt charts to visualize various data types
effectively. Luz et al. [29], [30] propose mosaic charts to make
the visualization more compact. Several subsequent studies
compared Gantt and mosaic charts [31], [32] and found that
these two charts yield similar reading accuracy, completion
time, and subjective assessments. Still, mosaic charts can
make good use of viewport spaces and convey the overlapping
information of parallel events. Moreover, other visual analysis
studies used extended Gantt chart to represent complex event
sequences, replacing rectangles with triangles to depict point-
based events and arranging different event types in different

vertical positions. For instance, LifeLines [18] and its follow-
up studies [19], [21], [33], [34] used extended Gantt charts
for exploring details of event sequences. However, Gantt and
ExtGantt charts can be less legible when there are many event
types because humans can only simultaneously perceive a
limited number (around 12 bins) of colors [35].

Stringline chart, also known as Marey’s graph, was orig-
inally developed in the 19th century to display a static
train schedule from Paris to Lyon [36], [37] and has been
widely used among transportation experts to represent fixed
schedules [6], [9], [38], [39]. It encodes time and distance
between stations on the horizontal and vertical axes [6], [9],
and sometimes in reverse [7]. Palomo et al. [6] extended it in
visual analytics for transportation. They introduced a system,
TR-EX, which used an extended stringline chart to reveal
spatiotemporal patterns of public transportation and employed
kernel density estimation for readability.

Other studies extended transportation schedule visualization
to present the industrial manufacturing process [1], [2], in
which the “transport stations” were replaced by “procedures”.
As illustrated in Fig. 1(b), procedures are placed on the y-
axis of a schedule, and a line segment along one procedure
slice represents an event within that procedure, with the
length indicating the event duration. The line segment between
two procedure slices represents the time interval between
two events. A polyline consisting of line segments of each
procedure represents a sequence of fixed-order events. Xu et
al. [1] used an extended Stringline chart to present historical
logs of assembly lines. They designed a time-aware outlier-
preserving visual aggregation algorithm to diagnose abnormal
durations among fixed-order events. Inspired by stringline
chart, Ono et al. [37] utilized a similar visual encoding to
summarize baseball plays. Tang et al. [2] integrated stringline
chart units into their system to display the waiting duration
between processing procedures. The existing studies suggest
that stringline chart-like visualizations effectively present du-
ration and timestamp patterns among similar or normal event
sequences. Still, they may result in visual cluttering when
showing large volumes of sequences.

These previous studies suggested timeline-based visualiza-
tions Gantt, ExtGantt, and Stringline can effectively visualize
fixed-order event sequences data, depending on factors such
as data structure, volume, and analysis tasks. Although Di
Bartolomeo et al. [40] evaluate the effectiveness of different
timeline shapes in presenting event sequences, their work
mainly focuses on the timestamp values on timelines, different
from specific charts with duration encoding in this work. To
our knowledge, no comparative study has formally assessed
the effectiveness of Gantt, ExtGantt, and Stringline charts in
visualizing fixed-order event sequences. While prior studies
offer valuable insights into various domains, it remains unclear
which is the optimal choice for a given situation. Therefore,
we conducted comparative experiments to evaluate the per-
formance of each chart in addressing visual analysis tasks
concerning fixed-order event sequences.
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Fig. 1. (a) The interval algebra in Monroe’s work [34], which is extended from Allen’s version [41]. In this work, we consider five of them in serial event
sequences (the black ones) and exclude others with temporal overlapping (the grey ones). (b) The five fixed-order event sequence types and how Gantt,

ExtGantt, and Stringline visualize them.

ITII. FIXED-ORDER EVENT SEQUENCE FORMULATION

To present fixed-order event sequences, we adopt Monroe
et al.’s classification of interval (I) and point (P) events [19],
[21]. We define an event gap (G) between two events, which
represents the temporal distance between two adjacent events
and is important for identifying temporal patterns [1], [2] in
fixed-order event sequences.

We introduce two more concepts, namely, the duration of
an event and the event gap between two consecutive events,
because these temporal features are commonly used in fixed-
order event sequence data [1], [2], [6], [8], [22]. The duration
of an interval event E! is defined by #¢ —¢f, and the duration of
a point event is 0. The event gap G; ;1 between two adjacent
events E; and E;y| is defined by #} ' —tf.

In this study, we consider the sequences without event
overlapping, which widely exist in the usage scenarios of
fixed-order event sequence visual analysis in previous stud-
ies [1], [2], [6], [8], [22]. Therefore, we select cases without
overlapping in Allen’s interval algebra [4]1] and Monroe’s
extended version [34] for this study (see Fig. 1(a)). The visual
representation of events and event gaps in Gantt, ExtGantt,
and Stringline charts differ in how events are encoded (see
Fig. 1 (b)). Therefore, we further classify the fixed-order
event sequences based on the presence of interval events,
point events, and event gaps. Note that sequences that only
have Point Events without Gaps (PP) means multiple events
occur at similar timestamps, resulting in entirely overlapped
point events (see Fig. 1(a)), so we excluded this condition.
Finally, we define five types of sequences as below. For more
details about the examples of each type, please refer to the
supplementary material.

o Interval Events with Gaps (IGI). In this type, each event is

E!, and r{ | > t¢. This type is often found in schedules that

involve breaks, such as an airplane schedule [8].
o Interval Events without Gaps (II). In this type, each event
is Ell , and 7}, | =1. Here events occur successively without
any gaps between them.

o Mixed Interval and Point Events with Gaps (IGP). In this
type, an event can be either E/ or Ef, and #f, | > ¢. In these
sequences, gaps can occur between events of either type.
This sequence type exists in mixed assembly lines such as
order processing pipelines [2].

o Mixed Interval and Point Events without Gaps (IP). In this
type, an event can be either E/ or Ef, and r{ | =1¢. The
point events occur at the same time as the start or end of the
interval events; thus, there is no gap between two adjacent
events.

o Point Events with Gaps (PGP). In this type, each event is
E,-P and #;11 > t;. This sequence type only includes point
events, with event gaps between adjacent point events. Such
sequences are common in public traffic schedules [6] and
automated assembly lines [1].

IV. STUDY OVERVIEW

In this section, we first describe our selection of tasks. Next,
we outline the variables of fixed-order event sequence data
in our study. We then introduce the measurement used in
both experiments. Finally, we outline the hypotheses of two
respective experiments for single and multiple sequences.

A. Task Selection

We started with surveying the literature on visual analytics
task taxonomy for event sequence analysis [22], [42]. We
focused on tasks related to temporal information, supported by
Gantt, ExtGantt, and Stringline. Tasks that required data mining
were excluded from our scope. Since interactive charts bring
more conditions to consider, like interaction technology and
highlight methods, to narrow our focus and ensure study
feasibility, we excluded tasks that require interactions in our
pilot study. As a result, we identified the following tasks:

e Retrieving Value. Read the value of start or end timestamps
of events (or event gaps) and their duration.

o Finding Extreme Value. Point out the longest or shortest
events (or event gaps) and the earliest or latest events (or
event gaps) in one sequence.
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o Comparing. Compare two timestamps, tell which is earlier,
compare two durations, and point out which is longer.

o Visually Detecting Anomaly. Find the event or the gap that
seems abnormal compared to others.

o Finding Temporal Patterns. Investigate and figure out the
timestamp and duration patterns among multiple sequences.

We recruited 13 participants from our institution and con-
ducted a pilot study to examine the practicableness of the
tasks. All the participants were students (8 males and 5
females). We randomly generated the five types of event
sequences defined in Sec. III by varying event type counts
and the numbers of sequences. Participants were assigned
tasks in a randomized order. From the feedback received, we
identified certain tasks within the study that either exhibited
redundancy, notable straightforwardness or lacked appropriate
definitions. First, participants were always required to engage
in value comparison (Comparing task) when they were asked
to identify extreme or abnormal values (Finding Extreme
Value and Visually Detecting Anomaly tasks). Second, for
participants to successfully perform the value comparison task
(Comparing task), they needed to initially retrieve the values
(Retrieving Value task). Third, we also noticed that the task
was particularly salient in specific comparison scenarios, such
as discerning earlier/later events or identifying event gaps. For
instance, the sequence of events in fixed-order event sequences
exhibited clear patterns — events located near the beginning
of the sequence were naturally the earlier ones. At last, we
realized the anomaly detection task is a high-level task related
to domain scenarios [1], [2], which differs in metrics.

To streamline the study and address these concerns, we
made the decision to retain solely the duration-comparing and
temporal-pattern-finding tasks in the formal study. This choice
was based on the fact that these tasks inherently encompassed
the requirements of the other tasks, obviating the need for
participants to obtain specialized domain expertise in order to
perform them.

« For the duration-comparing task, we focus on duration com-
parisons within one sequence. The reasons are threefold.
First, it is a simpler and more atomic task compared with
comparing the duration between multiple sequences. The
latter task has more conditions and makes the task complex
when event type counts and the number of sequences is
high. Second, the single sequence appears frequently during
a user’s highlighting or filtering interactions among multi-
ple sequences. Third, the existing study [43] demonstrates
aligning interactions can improve the speed of compar-
ing between multiple sequences, so it is not reasonable
to compare duration without such interactions in multiple
sequences. As such, we examine comparison in a single
sequence.

o For the temporal-pattern-finding task, we survey patterns
of fixed-order event sequences in the previous studies (see
Sec. IV-B), all of which exist in multiple sequence scenar-
ios. Therefore, we examine this task in multiple sequences.
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Fig. 2. When presenting multiple sequences, (a) ExtGantt, and (b) Stringline
may face readability issues in certain conditions, and therefore we didn’t
asses them in experiments. The internal test indicates that Gantt is the more
appropriate choice for presenting multiple /G/, II, and IGP sequences in a
non-interactive environment.

B. Experimental Variables

We have five variables: one is visualization, and the other
four variables are related to data, detailed below.

1) Visualization: We chose Gantt, ExtGantt, Stringline in this
study as they can encode fixed-order events’ temporal infor-
mation and have been widely used in previous studies or real
life (Sec. II). For the duration-comparing task, we chose all
three visualizations. For the pattern-finding task, based on our
findings in an internal test run within authors, we excluded
ExtGantt as it faces space limitations due to its encoding for
multiple sequences in a non-interactive environment (Fig. 2
(a)). For more details about the internal test, please refer to
our supplementary material.

2) Sequence Element Type: Based on the definitions in
Sec. III, there are five sequence types.

For the duration-comparing task, however, we found both
IP and II can only compare interval events’ duration. These
two sequence types have similar visual forms of interval
events, resulting in repetitive tasks. Therefore, we exclude
IP sequence and keep II sequence which is more concise, to
reduce the trials and make the study more practical. Overall,
we consider four types of sequences in the duration-comparing
task: IGI, II, IGP, and PGP. Specifically, we differentiated
between semantic elements such as events and event gaps.
To counterbalance possible conditions, the relative positions
of these elements within the II and PGP sequences were
considered distinct, because both types allowed the same
elements (E or G) to be adjacent. For example, II-nearl means
the near interval events in the II sequence while Il-apartl
means the apart ones. When dealing with /GP sequences, we
only considered the gaps as the event tasks are similar to those
in IGI or PGP sequences. Therefore, we had nine sequence
element types ( Tab. I) for the comparison task. The illustration
and more detailed explanation of sequence element types can
be found in the supplementary materials.

For the pattern-finding task, based on our findings in an

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on February 09,2024 at 08:02:40 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3358919

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

TABLE I
TRIALS COVERED IN THE TWO EXPERIMENTS.
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internal test run within authors, we filtered the conditions with
interval events since multiple sequences with /GI, 11, and IGP
types cannot be well visualized in Stringline (Fig. 2 (b)). It
suffered from severe overlapping issues when presenting in-
terval events, making it difficult to distinguish the duration. For
more detailed illustrations, please refer to the supplementary
material. As a result, we keep only the PGP sequence type for
the pattern-finding task, which is consistent with the sequence
type used in previous studies [1], [2], [6] involving Stringline.

3) Event type count: It can influence the number of colors
used in Gantt and ExtGantt, and the event axes in Stringline.
We only considered sequences with no duplicate event types
to ensure that the number of conditions is manageable. This
means that the number of events (M) within a fixed-order event
sequence {E1,E»,...,E,;} is the same as the number of event
types (M) {61,6,,...,0,}. Overall, we covered three event
type counts. Specifically, we used 4 as the smallest event type
count, as this was sufficient for gap comparison tasks in /IGP
sequence. We used 10 as the largest event type count because
too many colors will increase viewers’ cognition burden [35],
[44] and a 10-color scheme is commonly used in practice [45].
Then, we decided on 7 as the middle number of events (the
median of 4 and 10).

4) Number of Sequence: This variable influenced viewers’
inspections of visual patterns. Also, in cases where multiple
sequences were visualized, Gantt and ExtGantt require enough
viewport spaces to ensure readability. In contrast, Stringline
can present multiple sequences in a limited viewport but
faces visual overlapping when visualizing a large volume of
sequences. Overall, we covered four numbers of sequences.
Specifically, we included 10, 50, and 100 sequences for
sequences with low, middle, and high numbers of sequences.
We selected the maximum number of sequences of 100,
considering the constraints imposed by the fixed canvas size.

5) Temporal Pattern: We identified two patterns in events
or event gaps: similar timestamps and similar duration, based
on previous studies [1], [2], [8]. A similar timestamp pattern
refers to that the same event or gap type in multiple sequences
has simultaneous start or end times, indicating a batched
starting or ending of events (Fig. 3(b1)). A similar duration
pattern suggests the same event or gap type in multiple
sequences have a similar duration (Fig. 3(b2)).

C. Measures

Following previous studies on visualization technique com-

parison [46]-[49]. We used two quantitative measures:

o Error Rate: the proportion of the number of wrong answers
to the total number of trials in that condition.

o Task Completion Time: the time interval between a partici-
pant first seeing the chart and submitting their answer.

Each condition has 3 repeats.

D. Experiment Overview

We conduct two formal experiments based on the above-
mentioned tasks and variables. Experiment 1 is to understand
which chart performs better for comparison tasks on the
single fixed-order event sequences among the Gantt, ExtGantt,
and Stringline. Experiment 2 evaluates how Gantt and Stringline
perform in revealing temporal patterns for multiple fixed-
order event sequences. These two experiments share the same
measures.

1) Experiment 1 - Compare Duration in the Single Se-
quence: Our hypotheses for Experiment 1 are as follows:

Ex1-H1I: For different sequence element types, in task error
rate and completion time, Gantt and ExtGantt perform better
on interval element types, while Stringline performs better on
gap-related element types.

We suspect the colors being more visually salient improve
performance with Gantt and ExtGantt for intervals. However,
because gaps are not directly encoded at all in these two charts,
they might perform worse than Stringline where gaps are the
slash lines.

ExI-H2: Gantt and ExtGantt perform worse than Stringline
with larger event type counts in task error rate and completion
time. We suspect this is because too many colors of encoding
various event types in Gantt and ExtGantt can result in a high
cognitive load.

2) Experiment 2 - Find Patterns in Multiple Sequences:
For the task to find similar timestamp patterns, both charts
have apparent visual cues (Fig. 3(b1)). Note that we excluded
ExtGantt in this experiment, justified in Sec. IV-B. In Gantt,
the “line” formed by the same colored triangles indicates this
pattern. In Stringline, the lines’ intersection point illustrates the
pattern. Based on these observations, we had the following
hypotheses:

e Ex2-HI: For different event type counts, the two charts
exhibit similar performance in error rate and completion
time in finding similar timestamp patterns.

o Ex2-H2: For different numbers of sequences, the two charts
exhibit similar performance in error rate and completion
time in finding similar timestamp patterns.

For the task to find the similar duration pattern, the parallel
lines in Stringline are more apparent than the distance between
two colored triangles in Gantt (Fig. 3(b2)). According to
Gestalt Principles [50], the clustered visual patterns of parallel
lines can make Stringline more noticeable in this comparison.
As such, we formed the following hypotheses:

o Ex2-H3: For different event type counts, Stringline outper-
forms Gantt in task error rate and completion time in finding
similar duration patterns.
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Fig. 3. The example stimuli of low and high event type counts in (a) Experiment 1 and (b) Experiment 2. We scale the main visual contents of trials for
better presentation. We provide the original whole set of stimuli, including medium event type counts, in the supplementary materials.

o Ex2-H4: For different numbers of sequences, Stringline out-
performs Gantt in task error rate and completion time in
finding similar duration patterns.

V. EXPERIMENT DESIGN

In this section, we detail the design of the two experiments
(Ex1, Ex2), including the procedures, participants, and stim-
uli. We provided detailed supplementary materials, including
tutorial videos, stimuli, experiment interface screenshots and
demos, prompts, analysis code, and statistical results.

A. Experimental design and procedures

Our study employed a within-subject design, where each
participant completed the two experiments (see in Sec. IV-D)
in sequence. The experiment began with a video introducing
event sequence data and visualizations. Participants had to
watch it before moving on to the next stage. To reduce fatigue,
we divided all trials into five sessions, each containing only
trials of the same chart type. Therefore, we had three sessions
(Gantt, ExtGantt, Stringline) for Experiment 1 and two (Gantt,
Stringline) for Experiment 2 (Fig. 4).

First, they watched a tutorial video. For Experiment 1,
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Fig. 4. (a) The procedures for both experiments and (b) the study’s interface.
For more comprehensive screenshots and demonstration videos, please refer
to the supplementary materials.

the video introduced chart encodings and how to use the
experiment interface. For Experiment 2, the video explained
temporal patterns and how they were visualized in the chart.
Second, they did the practice trials to familiarize themselves
with the interface and charts. In this practice stage, we
provided correct answers for participants after they answered
to help them check their understanding. In each session, there
were 12 practice trials. Third, they started the main trials. In
this stage, we recorded the time participants spent in each
trial. To accurately record the time interval for answering, we
required participants to read the trial question, chart legends,
and axes presented in advance on the canvas and then to click
a button to load the stimulus. Then, they should choose one
answer from three options and proceed to the next one. After
completing each session, participants were suggested to take a
break. We randomly assigned participants in the order of chart
types. At the end of two experiments, participants completed
a demographics questionnaire and provided comments. All of
these procedures were notified to participants at the beginning.
The two experiments lasted around 100 minutes.

In Experiment 1, we evaluated 3 event type counts and 9
sequence elements, with 3 repeats for each condition. As a
result, we had 3 (event type counts)x9 (sequence element
types)x3 (repeats)x3 (chart types) = 243 trials. In Experi-
ment 2, we assessed 3 event type counts and 3 numbers of
sequences, with 3 repeats for each. As such, we had 3 (event
type counts)x 3 (numbers of sequence)x 3 (repeats) X2 (pattern
types)x2 (chart types) = 108 trials.

B. Participants

We recruited participants from an introductory visualiza-
tion class and the university’s internal bulletin board system,
providing them with partial course credit or financial com-
pensation (12 USD per hour). Participants were sent a link to
the web-based experiment system and asked to complete it on
their laptop or desktop. As a result, this could cause variations
in environmental conditions, such as screen size and lightness,
among participants. However, existing literature demonstrated
the validity of crowd sourcing studies for graphical percep-
tion [51].

By the recruitment deadline, we recruited 93 participants.
Among them, there are 60 males, 31 females, and 2 chose
not to disclose their biological sex. Their ages ranged from 19
to 27, with an average of 21.16. 87% (81/93) of participants
reported prior experience with event sequence visualization
(know but not use: 57, know and use: 19, knowledgeable: 4,
expertise: 1). Specifically, 77 have seen or used Ganit, 56 for
ExtGantt, and 53 for Stringline.

C. Stimuli

1) Trial Data: We used synthetic data for the study to
maintain a reasonable number of trials and ensure consis-
tency across conditions (Fig. 3). To ensure readability while
maintaining randomness, we adhered to certain constraints
(Sec. V-C3) during the generation of event durations and
timestamps within a single sequence. Under the readability
constraint, we randomly generated the duration of the events
and their timestamps within [00:00, 24:00] in one sequence.
Once the event timestamps are determined, the duration and
timestamps of event gaps are decided accordingly. Further
detail of our pattern generation in Experiment 2 is included
as part of the supplemental material.

2) Trial Questions: For each trial, the question and the
three options were generated randomly. In Experiment 1, the
question is “Which duration is longer, event X or event Y?”
or “Which duration is longer, between event X and event Y,
or between event Y and event Z?”. We randomly selected two
events or gaps to be compared in the question. The options
presented to participants consisted of each of these selected
events or gaps, along with one option labeled as “the same.”
In Experiment 2, the question for similar timestamp patterns
is like “Which event has the most sequences with the same
timestamp?”, while the question for similar duration patterns
is like “Between which two events, the duration between them
are always the same?”. The options included the patterned
event or gap and two other randomly generated events or gaps
within the trial sequences.

3) Stimuli Charts: To have a consistent visual searching
area for all the conditions, we rendered the stimuli charts on
a square canvas with a fixed ratio (0.85) to the screen height.
Moreover, to ensure the duration of interval events and event
gaps are readable in the three charts, we fixed the shortest
horizontal length of visualization shape (rectangles in Gantt,
line in ExtGantt, and line in Stringline) to 10 pixels. In order
to ensure visibility and differentiation through color mapping,
the height of the triangles in the Gantt chart was set to be
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larger than 5 pixels. If a participant’s equipment did not meet
these readability constraints, they would be unable to take part
in the study.

For all the trials, we utilized the color palettes provided by
Tableau 10 for visual representation [45], which was widely
used in visualization practice. No interactions were incorpo-
rated into the stimuli chart (see Sec. IV-A). Regarding the
event labels, we used alphabet letters as they could correspond
to a predefined order established for the events. This choice
facilitates intuitive identification and understanding of the
event sequence, enabling participants to interpret the chart
easily. To assist participants in retrieving the time values,
we provide vertical dashed lines that align with the ticks on
the time axis. These lines serve as visual references, helping
participants locate time.

VI. ANALYSES AND RESULTS
A. Analyses

We analyze, report, and interpret the results using interval
estimates [52]. We first average the results of three repeats
for each condition. For each condition, we report the means
of error rate and completion time. We calculate all the 95
confidence intervals (CIs) through BCa bootstrapping with
10,000 iterations. We also compare the error rate and comple-
tion time between each two of the tested charts. Following the
pairwise comparison methods that previous studies adopt [46],
[52], we present the differences in error rates and the ratio of
completion time. Note that in our analysis, we log-transformed
the completion time and anti-logged them in our reporting.

We also perform significance testing as additional analy-
sis. Because our data violates the normality assumption, we
choose the Friedman test for Experiment 1 and the Wilcoxon
test for Experiment 2, with Bonferroni-corrected p-values for
statistical tests. We planned all the analysis methods before
we practiced the experiments. All the codes and data can be
found in the supplementary materials.

B. Experiment I Results

We examine duration-comparing tasks regarding sequence
element types and event type counts, as we hypothesized
in Sec. IV-D1.

Ex1-HI1 (Fig. 5 (a)): The results show that Stringline has
lower mean error rates than Gantt and ExtGantt for all interval-
event-related elements (e.g., the mean error rate of Stringline
is 0.48 [0.0, 1.19]% (IGI-I), 0 [0, 0]% (II-nearl), 0.36 [0.0,
0.72]% (IlI-apartl)). We do not have conclusive results about
the error rate winner between Gantt and ExtGantt, as the
pairwise CIs overlay the zero. On the other hand, Stringline has
a higher mean completion time than Gantt and ExtGanit across
all sequence types, particularly in the three IGP sequence
element types (e.g., the completion time of Stringline is 4.19
[3.83, 4.6]s (IGP-piip), 4.91 [4.47, 5.46]s (IGP-pipi), 5.92
[5.41, 6.54]s (IGP-ipip). Gantt has similar mean completion
times to ExtGantt for element types such as IGI-G (Gantt: 3.63
[3.31, 4.02]s), PGP-apartG (Gantt: 3.5 [3.18, 3.9]s), IGP-piip
(Gantt: 3.26 [2.96, 3.67]s), and IGP-pipi (Gantt: 3.75 [3.42,
4.11]s), but lower mean completion times for other element

types. These findings partially support our hypothesis ExI-H1I:
Stringline requires more time than the other two charts in all the
element types except for the pairwise comparison with ExtGantt
in Il-nearl (1.03 [0.97, 1.12]x). However, Stringline has lower
error rates than the other two charts in interval-event-related
elements but no significant difference in gap-related elements,
which mismatches our initial hypothesis.

ExI-H?2 (Fig. 5 (b)): Compared to Gantt and ExtGantt, String-
line has marginally higher mean error rates for low (Stringline:
1.43 [0.96, 2.03]%) and middle (Stringline: 2.95 [2.31, 3.58]%)
event type counts but lower mean error rates for high event
type counts (Stringline: 1.95 [1.31, 2.67]%). However, across all
event type counts, Stringline showed longer completion times
than both Gantt and ExtGantt (e.g., the completion time of
Stringline is 3.3 [3.06, 3.62]s (low), 4.07 [3.78, 4.44]s (mid),
4.47 [4.09, 4.92]s (high), and the completion time ratio of
Stringline and the other charts decreases with event type counts
increasing. For the ratio in completion time, ExtGantt needs
a bit more (/.09 [1.03, 1.15]x) than Gantt in the middle
event type count. No other significant differences are observed
between Gantt and ExtGantt. These findings partially support
our hypotheses that Gantt and ExtGantt perform worse than
Stringline with larger event type counts in error rate.

a) Qualitative Feedback: In this experiment, participants
first needed to find the events mentioned in the chart and then
compare the duration of them. Participants were required to
understand the chart encoding, including visual elements that
represent the event types and indicate the duration length.
Several participants expressed their preference for the en-
coding of event types and the easiness of comparing gap
duration. First, four participants felt Stringline is more user-
friendly for distinguishing event types compared to Gantt and
ExtGantt. They reported that performing tasks with Gantt and
ExtGantt required extra time on color mapping. Particularly
when confronted with a multitude of event types, they found
that “in comparison to the color mapping utilized in Gantt,
the visual identification of event types in Stringline is more
direct and perceptible due to its positional and visual search
simplicity.” Specifically, as shown in Fig. 3(a) they had first
to look up the color legend, and then match two same
colors, finally retrieve event type information from the color
legend, which is at the bottom of the stimuli, far away from
the visualization. In contrast, Stringline allows participants to
directly follow the horizontal lines aligned to the vertical event
type marks, which are much closer and are at regular positions.
While ExtGantt does organize events of different types along
the vertical positions, they are mainly encoded by color rather
than position. Therefore, the vertical position serves only as a
reference rather than a concrete way of accessing event types.
On the other hand, three participants argued that Gantt and
ExtGantt’s colored symbols are more prominent and noticeable
than the uncolored lines in Stringline. Second, five participants
found it easier to compare near event gaps in PGP sequences
(PGP-nearG) using Stringline compared to Gantt and ExtGantt.
In Stringline, event gaps are represented by slash lines, whereas,
in Gantt and ExtGantt, event gaps are shown as the empty
spaces between two colored symbols. This is because Stringline
provided double visual references: the horizontal length of the
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B Experiment 1: Error Rate and Completion Time of Gantt, Extended Gantt, and Stringline on 9 Sequence Element Types
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Fig. 5. The quantitative result of the duration-comparing task in Experiment 1 about (a) nine element types and (b) three event type counts. Left: Mean Error
Rate and pairwise comparisons (difference). Right: Mean Completion Time and pairwise comparisons (ratio). We computed means, 95% bootstrap confidence

intervals, and the p values of the Friedman test.

slash and the slope of the line. A bigger angle formed by the
line and the horizontal axes indicates a shorter duration of an
event gap. Thirteen participants commented that the slope is
useful when comparing two adjacent slashes, as they could
draw a conclusion through whether the angle formed by the
adjacent slashes is obtuse or not. However, one participant
mentioned that the slope difference could not work well if the
compared duration was too similar.

b) Discussion: For the duration-comparing task in single
sequences, the effectiveness of the three charts depends on
the compared elements’ relative positions, the encoding of
sequence elements, and the familiarity of these charts. First,
comparing elements with a common reference is easier than
those without one. For example, the error rate and completion
time of the three charts in II-nearl are lower than in Il-apartl.
Similar cases are also observed for PGP-nearG and PGP-
apartG sequences. Second, when the number of events is
high, excessive use of colors may impact the effectiveness
of the charts. Both encoding event types by color, Ganit
and ExtGantt, have similar error rates and completion time
performance when the event type count is low, both lower
than Stringline. In contrast, when the event type count is high,
Gantt and ExtGantt have significantly higher error rates than
Stringline. This may be attributed to the extra perceptual burden
of distinguishing too many colors in Gantt and ExtGantt in
high event type count situations. Another evidence of the

influence that color issues may bring is that though Stringline
consistently requires more time than the other two charts,
the difference decreases when the event type count is higher.
Third, illustrated by the demographic questionnaire result,
almost half of the participants never knew about Stringline
(37) and ExtGantt (40), compared to Gantt (16). As a result,
Stringline requires more completion time than the other charts.
In contrast, the performance of ExtGantt is similar to Gantt in
conditions such as low event type counts, etc. Participants’
prior Knowledge affected their comprehension and utilization
of these charts.

C. Experiment 2 Results

We tested two temporal patterns: similar timestamps pattern
and similar duration pattern. In each pattern, we analyzed
Gantt’s and Stringline’s performance in different sequence and
event type counts (Sec. IV-D2).

Similar Timestamp Pattern

Ex2-HI1 (Fig. 6 (al)): Stringline has a lower mean error
rate (0.24 [0, 0.60]%) than Gantt (3.82 [2.75, 5.26]%) in the
high event type count condition, and less mean completion
time (e.g., high: 1.99 [1.90, 2.11]s) than Gantt (e.g., high:
5.58 [5.22, 6.02]s) across all three event type counts, which
partially rejects our hypothesis that the two charts have no
significant difference in the performance in finding similar
timestamp patterns for different event type counts.
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Fig. 6. The quantitative result of the temporal-pattern-finding task in Experiment 2. (a) Similar timestamp pattern in (al) three event type counts and (a2)
three numbers of sequence. (b) Similar duration pattern in (bl) three event type counts and (b2) three numbers of sequence. Left: Mean Error Rate and
pairwise comparisons (difference). Right: Mean Completion Time and pairwise comparisons (ratio). We computed means, 95% bootstrap confidence intervals,

and the p values of the Wilcoxon test.

Ex2-H2 (Fig. 6 (a2)): Stringline has a lower mean error rate
(0.72 [0.24, 2.15]%) than Gantt (5.97 [4.3, 8.0]%) when the
number of sequences is low. Moreover, Stringline (e.g., low:
2.10 [1.99, 2.23]%) has a lower mean completion time than
Gantt (e.g., low: 7.33 [6.85, 7.90]%) across all three numbers
of sequences. Thus, the result rejects the hypothesis that for
different numbers of sequences, the two charts exhibit no
significant differences in task error rate and completion time
in this task. The completion time ratio of Stringline to Gantt
is larger in the low number of sequence (3.49 [3.22, 3.8]%)
compared to the middle (/.55 [1.47, 1.66]x) and the high
number of sequence (1.5 [1.42, 1.59]%).

Similar Duration Pattern

Ex2-H3 (Fig. 6 (bl)): For all three event type counts,
Stringline outperforms Gantt, with lower mean error rates (e.g.,
Stringline: 7.89 [5.73, 10.75]% (low)) and shorter mean com-
pletion time (e.g., Stringline: 4.91 [4.50, 5.40]% (low)). This
confirms our hypotheses that for different event type counts,
Stringline performs better than Gantt in both error rate and time
in this task. Another pattern is that the ratio of completion
time between the two charts becomes smaller with the event

type count increasing.

Ex2-H4 (Fig. 6 (b2)): Stringline has lower mean error rates
(e.g., Stringline: 9.44 [7.17, 12.54]% (high)) and shorter mean
completion times (e.g., Stringline: 6.87 [6.32, 7.57]s (high))
than Gantt across all three event type counts, thus supporting
this hypothesis that for different event type counts, Stringline
performs better than Gantt in both error rate and time in this
task. Notably, in the low number of sequence conditions,
the difference in mean error rate between the two charts
(3.23 [0.48, 5.97]%) is smaller than in the middle (23.3
[19.47, 27.36]%) and high numbers of sequence (29.75 [25.45,
34.05]%). As the number of sequences increases, the differ-
ence in mean error rate becomes larger.

a) Qualitative Feedback: In this experiment, participants
first needed to find the temporal pattern mentioned in the
chart and then recognize the event type. They were required
to understand the encoding of event types and timestamps.
Several participants reported their strategies for recognizing
patterns.

For similar timestamp patterns, seven participants reported
that their strategy in Gantt was to find the vertical line formed
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by the same colored symbols, while in Stringline, they looked
for the intersection of the polylines, because “the same posi-
tion on the timeline indicates the same timestamp.” The ease
of finding this pattern was related to the number of sequences,
as more sequences increased their confidence in the finding.
One participant mentioned, “...when the number of sequence is
low, I'm not sure if there is a pattern at first glance and have
to check each sequence individually...”” Overall, they found
this pattern easy to identify because when events occur at the
same timestamp, both charts’ visual cues were intuitive and
apparent.

On the other hand, for similar duration patterns, six par-
ticipants reported the pattern apparent in Stringline, while 42
found it too difficult to identify it in Gantt. One participant
commented, “It seems challenging to find the two events
with similar distances among many colored symbols.” Another
participant complained the sequences seemed too crowded in
Gantt. Agreed with the color clutter, another participant thought
that to complete such a task correctly in Gantt, interactions like
filtering or aligning might help. For this pattern, participants
shared their strategies. In Stringline, they found the lines with
similar slopes, while in Gantt, they attempted to figure out
a band between the same composition of two colors in each
row. One participant also mentioned that she sometimes moved
her head back to see the chart overview and to find if
the lines formed by colored symbols had a similar shape,
which indicates a similar gap duration in multiple sequences.
However, if she moved too far from the screen, the symbols
became too small to distinguish the colors.

b) Discussion: For the temporal-pattern-finding task, the
effectiveness of the two charts is closely related to the clarity
of visual cues. First, the density of visual cues tied to the
number of event sequences, as reported by some participants
who felt they found patterns more quickly when the number
of sequences was higher. The results in similar timestamp
patterns also indicate this phenomenon. A low number of
sequences leads to sparse visualization content, obscuring cues
to locate patterns. However, this does not mean the higher
the number of sequences, the easier it is for viewers to
find temporal patterns, as a large number of sequences bring
scalability issues for both charts. For Gantt, a canvas can only
present limited sequences, necessitating extra assistance like
interactions like filtering and alignment, or a larger canvas
for an overview search of all the sequences for patterns.
For Stringline, sequences can generate overlapping on each
other, therefore masking important cues for pattern finding.
Second, the encoding of the two charts also influences the
appearance of visual cues, further impacting their effectiveness
in revealing temporal patterns. The layout of Stringline, such
as the horizontal event type axes, provides viewers with a
reference for comparing the duration of event gaps. The
consistent vertical distance between these axes also improves
the readability of event gaps. In contrast, the non-interactive
Gantt lacks a reference and can be limited by the clutter caused
by an overabundance of colors.

VII. GENERAL DISCUSSION

A. Design Opportunities

Stringline can be used in comparing tasks in IGI and
II fixed-order sequence types to get a lower error rate.
According to the experiment result reported in Sec. VI-B,
Stringline can have a lower task error rate for interval-event-
related fixed-order sequence types (IGI and II) when perform-
ing duration-comparing tasks in a single sequence. However,
there is a trade-off between a lower error rate or less comple-
tion time in practice because, given completion time, Stringline
is the slowest compared to other charts in such sequence types.

Gantt and ExtGantt can be used in comparing tasks in
fixed-order event sequences with a few event type counts.
As the results indicate, Gantt and ExtGantt perform better in
error rate and completion time than Stringline in low (n=4,
marginally in error rate) and middle (n=7) event type counts
but have higher error rates in high (n=10) event type counts.
Also, the results show that sequences with fewer event type
counts in both Gantt and ExtGantt, which rely on colors as the
event category encoding, have a lower error rate and require
less completion time than those with higher event type counts.
If there are too many events, aggregating related or adjacent
events can effectively address the color clutter issue, as applied
in previous work [19], [21].

Stringline can be used to reveal temporal patterns in
multiple PGP fixed-order event sequences. The result shows
that Stringline is more suitable for finding temporal patterns
in PGP fixed-order event sequences, especially when mul-
tiple event types are presented. This is because Gantt and
ExtGantt may face issues like space limitations and color clutter.
Furthermore, if the patterns have not been precisely known,
an apparent visual cue in visualization would be helpful for
pattern identification. In such cases, Stringline can provide an
overview without requiring extra alignment, making it superior
to the other two charts. However, if the number of sequences
is too large, all three charts may fail to reveal patterns. Instead,
layout algorithm like KDE [6] and aggregation [1], [8], [21],
or interactions [2] might be utilized to address visual clutter.

B. Reflections on Fixed-order Event Sequence Visualization

We may transform fixed-order event sequence types
for better presenting the source data. The data attributes
recorded in real scenarios and domain requirements could
affect the sequence type of a dataset. For example, to decrease
data redundancy, the II sequence dataset can only record the
event’s start timestamp because the end timestamp is the start
timestamp of the next event (see Fig. 1(b)), resulting in the
same data format as PGP sequences. This means that the
duration between two timestamps can be either considered
as an interval event or an event gap. Generally, whether
it is an interval event or event gap is based on domain
knowledge. However, suppose domain requirements allow
semantic transformation between events and event gaps. In that
case, transforming them can lead to a broader perspective to
explore the source data because the visualization of these two
sequence types has different visualization forms, resulting in
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more possibilities for visualizing the source data and a concise
choice based on the design opportunities aforementioned.

In addition to a PGP sequence, Stringline might be used
to visualize multiple fixed-order event sequences of other
types. As indicated in Fig. 2(b), Stringline can face overlap-
ping issues when visualizing interval events in the multiple
sequence condition. Instead, previous work used to visualize
interval event sequences (such as IGI and II) by Gantt or
ExtGantt [2], [8], [21]. Nonetheless, our study found that
Stringline conditionally outperforms others. Specifically, it has
advantages in comparing interval events in a single sequence
and revealing temporal patterns of point events and event gaps
in multiple sequences.

Given its advantages in revealing temporal patterns and
disadvantages in interval event overlapping, there are values to
optimize Stringline or its variants for interval events in multiple
sequences. Such optimization can involve color encodings and
layout rearrangements inspired by related methods in line-
based temporal visualization proposed in previous studies,
such as colored waterfall [53] and stacked lines [54], [55].
More effective designs for visualizing fixed-order event se-
quences in Stringline require further studies.

We can make use of the unchanging event order of
fixed-order event sequence data in Gantt and ExtGantt.
Gantt and ExtGantt encounter challenges related to color clutter
when event type counts are high. Nevertheless, fixed-order
event sequences possess a distinct advantage: their unchanging
event order can serve as a latent reference for encoding
event types, for instance, through sequential color mapping,
thereby conveying sequential information. However, selecting
an appropriate sequential color mapping method necessitates
further investigation. This is due to the potential similarity
between nearby colors in a sequential color map, which could
impose a visual burden on people to discern specific event
types and potentially impact temporal pattern recognition.

C. Limitations and Future Work

Our study is an initial step towards bridging the gap between
the theoretical literature and visual analysis practice for fixed-
order event sequence data visualization. The findings verify
the design used in previous studies and inspire potential for
new applications. Below we discuss the limitations of our work
and opportunities for future work.

First, all of the participants in our experiments are stu-
dents from one university, and most of them are from a
data visualization course. The advantage is the guarantee of
data quality, while the disadvantage is the narrow range of
occupations, which could have biased how they understand
and approach the tasks. Besides, as we discussed in Sec. VI-B,
the differences in task completion time may be due to the
user’s less familiarity with the charts. Although we prepare
tutorials and practice for participants to ensure they understand
the encoding of the chart, we cannot enable them to use the
chart in a short time skillfully. Further investigation is needed
to provide more evidence for the completion time difference
between these charts over the long term.

Second, the tutorial video could potentially influence how
participants comprehend the charts and find patterns. We didn’t

mention the visual cues or patterns in the tutorial video and
question. Instead, our trial questions focused on the data
itself (see Sec. V-C2). However, we circled roughly where
the patterns were for illustration purposes. While participants’
comments indicate their interpretation of data and chart en-
coding, some of them might have taken a shortcut and used
similar visual cues during the formal trials.

Third, as the static version is basic for viewers’ reading
visualizations, we excluded the interaction variables in this
work to make conditions under a practical level, but charts in
visual analysis systems can be interactive. How interactions
can help to finish visual analysis tasks in these charts is worthy
of evaluation in future work. Moreover, to keep the constant,
we present charts in a limited and fixed canvas, but realistic
scenarios can be more diverse with various canvas sizes and
length-width ratios.

Forth, we selected Gantt, ExtGantt, and Stringline and em-
ployed their fundamental encodings in our study. These
choices were influenced by their prior use in relevant studies or
their suitability for visualizing fixed-order event sequences [1],
[2], [6], [8], [18]-[21]. However, due to limitations in terms of
space and readability, we had to exclude a list of conditions
related to visualization and sequence element variables, i.e.,
extended Gantt chart for multiple sequences and stringline
chart for interval-based event sequences. In our internal test,
Gantt appeared to be the best choice for multiple interval
sequences. Yet, we also believe that addressing these limita-
tions in ExtGantt and Stringline will necessitate future research.
Conclusions drawn from this study may require validation
when improved designs to overcome these limitations become
available.

Another limitation is that we used synthetic data to comprise
the readability of stimuli on one screen and real-world data
complexity. We only evaluated 1, 10, 50, and 100 sequences
with 4, 7, and 10 events, and fixed the shortest horizontal
length of the visualization shape to ensure the duration of
events and gaps are readable. If certain conditions within a
specific chart become unreadable, it signals that the chart
might not be the optimal choice and could benefit from
necessary optimization. Future work might extend and validate
our results on real-world datasets.

Finally, this study evaluates Gantt, extended Gantt, and
stringline charts on five kinds of serial fixed-order event
sequences, which differ in the composition of interval events,
point events, and event gaps. While the scope of sequence
data is broad, our work focuses on a specific branch of event
sequences with two characteristics. First, events occur in a se-
quential order without temporal overlaps. Second, event types
follow a predetermined and fixed order without interleaving
and the number of events is the same as the number of
event types in a sequence. Such sequences resemble linear
progress found in various contexts, such as automatic pipelines
in industry, cascading processing workflows in logistics, a
schedule of public transportation, and the growing status
in biology, demonstrating the common existence of fixed-
order event sequences and the importance of understanding its
visualization. The two data characteristics enable the stringline
chart to visualize such data, as indicated by previous stud-
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ies [1], [2], [6]. This explains why we specifically target such
event sequences and include the stringline chart in addition to
the Gantt chart and extended Gantt chart, which is designed
for more general sequence data [2], [8], [21].

However, it is important to note that the findings of this
study may not apply to other types of sequence data without
these two characteristics (like sequences with unpredefined and
inconsistent event orders), as the stimuli for the sequences can
differ from those considered under experimental conditions.
The application of these visualizations to other types of
sequence data and their performance in those contexts require
detailed discussion on unpredictable event orders, event over-
lapping, etc., and further investigation of visualization literacy,
which is beyond the scope of this study.

VIII. CONCLUSION

This work presents a comparative study on Gantt, ExtGantt,
and Stringline charts in visualizing fixed-order event sequence
data. Our study scope encompasses five types of event se-
quences, which serve as the basis for conducting two experi-
ments involving a total of 93 participants. These experiments
aim to evaluate the effectiveness of these visualizations in
terms of comparing duration and revealing duration and times-
tamp patterns.

Our experiments find evidence that for the duration-
comparing task, Gantt and ExtGantt require less completion time
than Stringline, but Stringline has lower error rates in interval-
event-related sequence elements and high event type count
conditions. For the temporal-pattern-finding task, Stringline
chart exhibits less completion time and lower error rates com-
pared to Gantt. Specifically, for the similar timestamp pattern,
Stringline had a lower error rate than Gantt in two conditions:
high event type counts and low number of sequences. For the
similar duration pattern, Stringline outperformed Gantt in both
error rate and completion time in all experimental conditions.
Based on our findings, we provide several reflections on
the utilization of these charts for different fixed-order event
sequence data and tasks, as well as future avenues for their
improvement. Our study outcomes can serve as a valuable ref-
erence for future research and practitioners seeking to employ
appropriate visualizations for fixed-order event sequence data.
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