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Abstract
Microsurgery is a general term for surgery combining surgical microscope and specialized precision instruments during
operation. Training inmicrosurgery requires considerable time and training resources.With the rapid development of computer
technologies, virtual surgery simulation has gained extensive attention over the past decades. In this work, we take advantage
of mixed reality (MR) that creates an interactive environment where physical and digital objects coexist, and present an MR
framework for the microsurgery simulation. It enables users to practice anastomosis skills with real microsurgical instruments
rather than additional haptic feedback devices that are typically used in virtual reality-based systems, and to view a realistic
rendering intra-operative scene at the same time, thus creating an immersive training experience with such a visual-tactile
interactive environment. A vision-based tracking system is proposed to simultaneously track microsurgical instruments and
artificial blood vessels, and a learning-based anatomical modeling approach is introduced to facilitate the development of
simulations in different microsurgical specialities by rapidly creating virtual assets. Moreover, we build a prototype system
for the simulation specializing in microvascular hepatic artery reconstruction to demonstrate the feasibility and applicability
of our framework.

Keywords Virtual surgery · Mixed reality · 3D tracking · 3D modeling

1 Introduction

Microsurgery is a surgical subdiscipline that combines
magnification with surgical microscopes, specialized preci-
sion tools and anastomosis techniques (see Fig. 1) [1, 2].
Microanastomosis techniques are primarily used to anas-
tomose micro blood vessels and nerves, which are widely
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utilized inmodern surgical operations such as plastic surgery,
transplant surgery, ophthalmic surgery, and artery reconstruc-
tion [1, 3]. However, a qualifiedmicrosurgeon requires a very
long learning curve to gain adequate anastomosis skills [3].
According to the types of the materials used in the train-
ing process, the traditional training models can be classified
into two main categories: synthetic model and biological
model [4–7]. As illustrated in Fig. 1, the synthetic models,
also known as non-living models, are made from artificial
materials [4, 5]. They are cost-effective, but lack of realism
from the visual sense [4, 5]. The biological models refer to
animal cadaveric tissues and live animals, which have been
considered as the “gold standard” of microsurgical training
[8]. However, the biological models always face the issues
related to the ethical treatment of animals and incur high costs
in a long-term usage [4–6, 8]. With advances in computing
technologies, especially in computer-aided simulation, sur-
gical training is undergoing a rapid evolution. Virtual surgery
simulation provides a visually plausible, non-hazardous and
effective supplement to the traditionalmicrosurgical training.

The virtual reality (VR)-based system typically combines
a head-mounted display (HMD) and 1–2 haptic feedback
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Fig. 1 a Microsurgery operating room [2]. b Intra-operative views
under the surgical microscope. c Practice Card and Gauze & Tape mod-
els [9].dAnimalmodels include chicken, rat and rabbit [8, 10]. eVirtual
microsurgery simulators withmodified haptic feedback devices [11, 12]

devices (HFDs) [13]. The HFD provides the force feedback
and the interaction means while the HMD presents the visual
rendering result of the intra-operative scene to the users. This
combination has also been applied to the microsurgery sim-
ulation. However, though some studies have made efforts
to modify the HFD to make it more usable for the micro-
surgery simulation (see Fig. 1e), its interaction pattern does
not seem to fit very well with microsurgery, and the simu-
lated force generated by the HFD cannot provide users with
the surgical tactile force from the fingertip which is one of the
most essential factors in microsurgical training [4, 13]. Com-
pared with VR-based systems that put users in a fully digital
world,mixed reality (MR) creates an interactive environment
where physical and digital objects coexist, which is likely
to be a more promising alternative for microsurgery simu-
lation. In this research, we propose an MR framework for
the microsurgery simulation that leverages the affordances
of MR technologies. It allows users to practice on physical
objects (artificial blood vessels made by soft silicone tubes)
and use real microsurgical instruments rather than additional
devices. As shown in Fig. 2, the motion and deformation data
are captured for the simulation procedure via a vision-based
system, which are then applied to drive the corresponding
digital objects move. The realistic rendering intra-operative
view of microsurgery is presented onto the lens of an HMD.
In this scenario, the HMD can be considered as an effective
substitute for the surgicalmicroscope. In addition, a learning-
based method is proposed to rapidly reconstruct 3D models
from single 2D X-ray images, which can greatly facilitate
the development of simulations for different microsurgical
specialities.

A couple of challenges include interaction design, accu-
rate tracking and efficient 3D modeling need to be overcome
to make the blueprint into reality. Both hardware design and
software development are involved in this project. The dif-

ficulty of the design lies in finding ways of simulating an
interactive environment which provides users experiences
as natural as that of surgeon operating microsurgical instru-
ments during a real microsurgery. After a few microsurgical
observations and communicating with a senior microsur-
geon, we propose a metal workbench-centered hardware
design as shown in Fig. 2. In addition, an effective track-
ing approach that can simultaneously capture the motion of
microsurgical instruments and the deformation of artificial
blood vessels is crucial to this project. Among various track-
ing approaches, the vision-based method is considered as
a promising candidate for the tracking of surgical instru-
ments because it is contactless sensing, light weight and
cost-effective [14]. Besides, the captured images not only
can be used for tracking but also can be used for compositing
MR images, which makes visual sensing a perfect fit for this
MR-based simulation. However, there is few vision-based
method to the best of our knowledge can simultaneously
track multiple rigid objects and deformable objects in the
virtual surgery.We employ several 3D printed platonicmark-
ers [15] along with a modified statistical method to track
the microsurgical instruments, propose an efficient hybrid
algorithm for the tracking of artificial blood vessels, both of
which are integrated into a multi-view tracking system. As
for the anatomical modeling, the patient-specific modeling
(PSM) that reconstructs anatomical models from patient-
specific data [16] provides a source of inspiration for our
work. Compared with the traditional PSM work that usually
reconstructs models with voxel or point cloud format from
3D volumetric imaging data [16–18], we present a learning
architecture that generates 3D mesh organ models directly
from single 2D X-ray images.

In simple terms, the main contributions of this work can
be summarized as:

– An MR framework for microsurgery simulation is pre-
sented. It aims to increase the immersion by providing
users with a visual-tactile interactive experience. Both
the hardware and software are developed in this work.

– A series of essential techniques are presented. They
constitute the main functional modules of our frame-
work, including vision-based surgical instruments track-
ing, artificial blood vessels tracking, and learning-based
anatomical 3D modeling.

2 Related work

2.1 Microsurgery simulation

Simulation-based methods are popular in microsurgical
training and incorporated into the standard practical train-
ing courses. Various simulators have been proposed, which
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Fig. 2 Framework overview

can be classified into three main categories according to
the model types: synthetic models, biological models, and
virtual models [4–7]. The Synthetic models refer to the arti-
ficial materials which are used to simulate real soft tissues.
Fanua et al. [19] use a practice card which is made of sur-
gical gloves and medical grade tubes to substitute for the
laboratory animals in the microsurgical training. A course
of microsurgery essentials released by Stanford University
School of Medicine [9] suggests a practice card and a tape
model made from latex surgical gloves (Fig. 1c). Polyvinyl
alcohol (PVA) gelatin tubes and silicone tubes are employed
in some simulators for anastomosis training [20, 21]. To give
it a more realistic simulation, a PVC-rat anatomical model
is introduced [22]. Similarly, De Virgilio et al. [23] build a
human-size silicone mannequin model in their microsurgical
exercise platform.

Although synthetic models allow users to practice on the
physical soft materials in an efficient and cost-effective way,
they cannot fully substitute the biological models due to the
lack of visual fidelity [4, 7]. As shown in Fig. 1d, rabbit, rat,
chicken and their tissues are the most commonly used bio-
logical models [4]. In the Stanford’s microsurgery essentials
course [9], chicken feet are utilized as high fidelitymodels for
microvascular anastomosis training. Chicken thighs are also
frequently used in practice [24, 25].Comparedwith the single
organ models, live animals are identified as the best sub-
strates for the training of microsurgical techniques because
of the presence of natural “wet” environment [5, 10, 26, 27],
which is the “gold standard” for the microsurgery simula-
tion despite ethical issues and high costs [7]. For instance,
New Zealand albino rabbits are employed by de Giacomo
Carneiro et al. [26] and Wanderer et al. [10] for anastomo-

sis training. Rodríguez et al. [28] and Yamamoto et al. [27]
choose live rats as the substrate in their training simulators.

Advances in computer-aided technologies have led to a
growing interest in virtual microsurgery simulators. A VR-
based microsurgery simulator is introduced by O’toole et al.
[29] as early as 1999. It shows virtual models have a posi-
tive impact on anastomosis training, similar conclusions are
drawn by Kazemi et al. [30] and Alaraj et al. [31]. Although
the virtual microsurgery simulators have been explored for
decades, the interaction pattern and the combination of HMD
and HFD have barely changed. Some recent studies focus
on modifying HFDs to enhance the fidelity of the devices.
Hoshyarmanesh et al. [12] propose a microsurgery-specific
haptic device with articulated structure as shown in Fig. 1e.
However, the simulated force is no substitute for the real
force from the microsurgical instruments (e.g., forceps, nee-
dles, and scissors.) after all. Our framework aims to create an
MR-based interactive environment that allows users to feel
realistic force feedback from their fingertips, and meanwhile
provides a visually plausible experience.

2.2 Vision-based tracking for surgical instruments
and soft tissues

Vision-based tracking of surgical instruments has perme-
ated into various surgical specialities, such as endoscopic
surgery, cholecystectomy, and neurosurgery. Ryu et al. [32]
present a hybrid vision algorithm combining k-means classi-
fication and Kalman filter tuning for tracking a robot arm in a
robot-assisted endoscopic surgery. Yang et al. [33] introduce
a self-contained tracking framework via ultrasound image-
based localization to register the initial camera position with
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its scene geometry. Sánchez-González et al. [34] present
a method for laparoscopic instrument tracking via image
segmentation accompany with 3D reconstructed abdomi-
nal structures. Robu et al. [35] propose a geometric object
descriptor to help with overlapping bounding box disam-
biguation, which achieves promising accuracy in tracking
laparoscopic tools. There are some research projects use
fiducial markers to improve the robustness and accuracy. A
tracker comprised of a set of squared markers and an electro-
magnetic sensor is introduced by Liu et al. [36] to track the
motion of a laparoscopic ultrasound transducer. Gadwe et al.
[37] present a cylindrical handle with a series of squared
markers wrapped, for the tracking of cylindrical surgical
instruments. However, these methods are mostly stuck with
estimating a single pose for a single instrument in a specific
scenario, cannot be directly applied to track multiple micro-
surgical instruments.

Vision-based methods have also been applied to track
soft tissues. Richa et al. [38] present a thin-plate spline
deformable model to track the beating heart surface from
stereo images. Wong et al. [39] also propose a deformable
model for soft tissues tracking, which is based on a quasi-
spherical triangle surface. A matching-based method is
introduced by Yang et al. [40]; it consists of two recursive
processes, a kernel-based inter-frame motion estimation and
a model-based intra-frame 3D matching algorithm. Under a
stereo microscopic view, Schoob et al. [41] present a linear
parametrization method enabling left-right consistency for
stereoscopic tracking of the soft tissues motion. Song et al.
[42] propose awarping field based on embedded deformation
nodes, which allows it to capture the deformation data of sur-
faces incrementally. In this work, we present a vision-based
system that is able to simultaneously estimate six-degrees-
of-freedom (6DoF) poses and capture deformation data for
the MR-based microsurgery simulation.

2.3 Patient-specific anatomical modeling

Researchonpatient-specific anatomicalmodelinghas increased
tremendously over the past decades. Different organs and
anatomical structures can be reconstructed from patient-
specific data. The process typically can be divided into five
steps: (1) patient-specific data acquisition, (2)medical image
segmentation and registration, (3) 3D model generation, (4)
material properties assignment, and (5) simulation test [16,
17, 43]. The most commonly used patient-specific data are
derived from MRI, CT, ultrasound and X-ray images, which
have become the main source for anatomical modeling [16–
18, 44].

With recent progress in utilizing deep neural networks
(DNNs) for image segmentation and 3D shape acquisition,
there has been a great increase in introducing DNNs into the
anatomical modeling pipeline. A computationally efficient

Fig. 3 The system pipeline and data flow. The blue boxes represent the
main functional modules, and the grey boxes denote the output data.
Arrows indicate the directions of the data flows

modeling framework is presented by Tahir et al. [45]; this
learning-based approach is used for brain vascular segmen-
tation. DeepSSM [46] is a framework that contains CNNs
to extract 3D shapes with a low-dimensional representation
from 3D imaging data. Kong et al. [47] claim a hybrid net-
work architecture to predict the 3D shape of a heart from 3D
volumetric CT and MR images. Each approach mentioned
above focuses on one step of PSM or reconstructing a spe-
cific anatomical structure.We present an end-to-end learning
architecture that is capable of generating 3Dmesh from a sin-
gle 2D image. The generated mesh can be directly used to
build virtual environments for the microsurgery simulations.

3 Framework overview

The framework can be divided into hardware and software
parts. Aworkbench is designed andmanufactured towrap the
devices and instruments in a compact workspace as shown in
Fig. 2. It is made of iron and steel; the main body is an iron
plate with a steel column standing on top of it. The essential
components including an HMD (Oculus Rift), cameras (two
Logitech webcams and a ZED mini stereo camera), lights,
operating area and hand pads are attached to the base plate via
industrial magnets. A magnetic arm system is employed to
hold the essential components which can be easily adjusted
to meet the different requirements.

The software system is comprised of several functional
modules as illustrated in Fig. 3. The tracking module deals
with the tracking of physical objects, including the micro-
surgical instruments and artificial blood vessels. The motion
and deformation data are collected and utilized to drive the
simulation process. The renderingmodule generates realistic
rendering frameswhich are then presented to the final display
module and observed by users.

123



Amixed eality framework for microsurgery...

Fig. 4 Microsurgical instruments and soft silicone tubes. aMicrosurgi-
cal instruments with fiducial platonic solids. The marker lengths of the
hexahedron and dodecahedron solids are 5.1mm and 7.5mm, respec-
tively. b Silicone tubes with different sizes are employed as the artificial
blood vessels. c Operating area. The tubes with 0.7mm wall thickness
and 2.0mm diameter are used for the simulation

4 Vision-based tracking system

4.1 Tacking of microsurgical instruments

The tracking of a single rigid object refers to estimating
the six-degrees-of-freedom (6DoF) pose of the target object.
The pose T can be represented as a rotation R ∈ SO(3)
and a translation t ∈ R

3 so that the target pose can be

described as:T =
[
R t
0 1

]
∈ SE(3), where SO(3) is the spe-

cial orthogonal group, and poseT is an element of the special
Euclidean group SE(3). The pose is a transformation process
between the local coordinate space and the camera’s. Let
x̂i = [xi , yi , zi ]T ∈ R

3 be the 3D points in the local space
and xi = [ui , vi ]T ∈ R

2 be the corresponding 2D points in
the image plane. Then, the relationship between these two
sets of points is given by:

xi = π(KTx̂i ) = π(K[R|t] [xi , yi , zi , 1]T ),

where π(x̂) = [x/z, y/z]T is the projection operator and
K ∈ R

3×3 is the camera intrinsic matrix that can be obtained
from an offline calibration step.

However, themicrosurgical instrumentswith localmechan-
ical motions, such as the shearing motion of scissors and the
clampingmotion of forceps, cannot bemodeled as the simple
6DoF pose. In this work, we treat the compound motion as a
combination of several localmotions and integrate the TsFPS
[15] into our tracking system. As shown in Fig. 4a, the fidu-
cial platonic solids (FPSs) are attached onto the instruments.
The trajectories can be recovered by continuously estimating
the pose of each FPS. Experimental results of the instrument
tracking are demonstrated in Sect. 7.

4.2 Non-rigid object tracking and simulation

We propose a semi-dense method for the soft tissue track-
ing instead of the dense tracking. For a single frame in the

Fig. 5 Workflow of the shape matching-based tracking and mapping
approach

loop, a fast shape matching method is utilized to extract the
edge points of the soft tissues frommulti-view images. These
points are then mapped to the 3D models for the deforma-
tion simulation via the PBDmethod [48]. Figure5 shows the
overview of the workflow. Algorithm 1, meanwhile, demon-
strates the detail of our method.

Algorithm 1 Soft Tissue Tracking
1: for all views do
2: Pk : ShapeMatching(Uk ,Vk )
3: end for
4: P̂ : ValidPointPairsFilter({Pk})
5: x : Triangulation(T, P̂)

6: X : UpdateFeatureVertices(x)
7: while count < solveI terations do
8: PBDConstraintSolver(X)

9: count = count + 1
10: end while
11: UpdatePositions(X)

12: UpdateVelocities(X)

LetUk = {ui } andVk = {v j } be the sets of edge maps for
the template images (rendered from underlying 3D models)
and the query images (captured from cameras), respectively.
k is the camera id, and ui and v j are the points of the edges.
The camera system C = {Ck} captures streaming data from
different views, whereT = {Tk} is the pose of the camera.Pk

is the sampled feature pairs based on thematched shapes. The
vertices of the underlying model are denoted as x ∈ R

n×3.
Lines (1)–(3) show that the shape matching is the first step
in each loop. The typical chamfer distance between U and V
is Dcm = 1

n

∑
ui∈U minv j∈V |ui − v j |. The value is given by

mean distance between each point in U and its nearest edge
in V . To achieve a more robust matching, we employ the
directional chamfer distance [49, 50]which adds a directional
term to the left. The directional chamfer distance is given by:

Ddcm(U,V) = 1

n

∑
ui∈U

min
v j∈V

|ui − v j | + λ|φ(ui ) − φ(v j )|.
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where the first term is a standard chamfer matching dis-
tance and the second is a penalty term for directions. λ is
a weighting factor between the chamfer score and the direc-
tional score. The direction φ(x) is represented as the angle
between the horizontal line and the tangential direction.

After the shape matching process, a set of point pairs
Pk = {[ui , v j ]} is obtained by uniformly sampling the tem-
plate and query edgemaps. The points of templatemaps have
the corresponding 3D vertices x which can be inferred from
the Frame Buffer. Thus, the valid point pairs P̂ are acquired
by applying a simple logical AND operation to all sets of
point pairs {P1, ...,Pk} as shown in Line (4) of the Algo-
rithm 1. By giving the valid point pairs P̂ and camera poses
T , the 3D positions of the vertices x can be obtained by tri-
angulation [51]. Lines (7)–(10) represent the procedure of
PBD that provides an efficient and visually plausible sim-
ulation for deformable objects. The number of iterations is
a constant which directly affects the computation efficiency
and accuracy of the results. A larger number leads to visually
more plausible but increases the computational burden.

5 Anatomical modeling

5.1 Method overview

As mentioned, we use an end-to-end learning-based frame-
work for anatomical modeling, which is presented in more
detail in this section. This framework is inspired by (1)
patient-specificmodeling approach that reconstructs anatom-
ical models from the patient-specific data [16] and (2) recent
deep learning work in recovering 3D shapes from single
2D images [52, 53]. Figure6 shows the overview of the
framework, including data acquisition, network training, and
testing procedures. The design follows a two-step strategy
[53]. A CGANs architecture is used to train a generator
that converts X-ray images to normal images. These normal
images provide the silhouette and geometric constraints to
the CNNs for the mesh predictor training. The architecture
of the encoder–decoder CNNs is identical to that of the prior
work [53]. A differentiable renderer is incorporated into the
framework; it provides approximate gradients for the render-
ing process, which leads to the successful integration of the
3D rendering pipeline into neural networks. By introducing
this differentiable renderer, the bridge of error propagation
between 2D image data 3D spatial data is built, thus enabling
easier training for the mesh predictor without any 3D super-
vision.

The output model is deformed from a predefined tem-
plate mesh. The deformation process is formulated as vi +
�vli + �vg , where vi is the vertex of the mesh, �vli is the
local bias for each vertex, and �vg is a global bias. These
two bias vectors are the outputs of the mesh predictor. For

Fig. 6 The overview of the modeling framework. The framework con-
sists of a CGANs [54] architecture for normal image generation and an
encoder–decoder CNNs architecture for mesh prediction. The training
data include synthetic X-ray images and normal images, both of which
are obtained by rendering from a anatomical model dataset

each category of the anatomy structure, a neutral predefined
anatomical mesh is used as the underlying template model.
The objective is a simple function based on the 2D image
distance benefits from the incorporation of the differentiable
renderer. The objective function consists of an intersection-
over-union (IOU) term, a normal loss that is the L1 norm
distance between the normal images, and a smoothness loss
[53, 55] which is utilized to keep the consistency of the mesh
surface.

5.2 Data acquisition

This 3D modeling module aims to recover the anatomical
model from a single 2D X-ray image. Massive amounts of
2D medical imaging data and 3D models are required for
training the networks. However, there is no such a large-
scale medical image dataset which contains corresponding
anatomical mesh models. Thus, an artificial medical image
generation pipeline is introduced in this work. It is built upon
a standard rendering pipeline with a normal shader and an X-
ray shader. The normal generation is a conversion between
the surface normals and RGB values. The X-ray shader is
developed upon the relative depth of the mesh. By reading
data from the Z-buffer, the relative depth value can be given
by: D = 1− z−dmin

dmax−dmin
, where z is the depth value of the vertex

and dmax and dmin represent the furthest and nearest distances
of the vertices with respect to the current angle of view. It
in line with the imaging principle of the X-ray scan that is
the penetration depths of X-ray photon [56]. By introduc-
ing these two shaders, our rendering pipeline can efficiently
generate both syntheticX-ray images and normal images.We
generate and collect a spine dataset and a liver dataset for our
experiments (see Sect. 7). The spine is a skeleton structure
and the liver is a soft tissue, which are two representative
human anatomical structures. Furthermore, the liver mesh is
used in a prototype development that is presented in Sect. 6.
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Fig. 7 Component diagram of the system

6 Prototype development

In this section, we present a prototype system based on our
framework. Besides the tracking andmodelingmodules, ren-
dering and suturing modules are introduced to create an
interactive simulation for themicrosurgery inmicrovascular
hepatic artery reconstruction (MHAR). From the perspec-
tive of software engineering, all the functional modules are
organized into five subsystems as shown in Fig. 7. This pro-
totype system is developed by using C++ and OpenGL API,
please refer to Sect. 7 for more details of the development
platform.

Tracking. The proposed tracking system is implemented.
Hexahedron FPSs with 5.1 mm marker length and dodec-
ahedron FPSs with 7.5 mm marker length are used for
tracking needle, holder, forceps and scissors (see Fig. 4). Soft
tubes with 0.7 mm wall thickness and 2.0 mm diameter are
employed as the artificial blood vessels, which are the typical
synthetic models in traditional training simulators [20].

Modeling and Rendering. A 3D liver model is used to
create a virtual environment for the simulation. This mesh
model is generated via our learning-based anatomical mod-
eling method. We employed a neutral liver shape mesh with
642 vertices as the predefined template in the training and
testing processes. In addition, to create an immersive virtual
environment, a physics-based rendering (PBR) [57] pipeline
with specialized materials is introduced to provide efficient
and realistic rendering to our prototype system. The surface
parameters for PBR can be given by different textures. A
couple of texture layers provide base color, scattering, nor-
mal, extra shadow and roughness parameters to our rendering
pipeline. The result is demonstrated in Sect. 7.

Suturing Simulation. A few studies have been undertaken
on surgical suturing simulation. Xu and Liu [58] use the PBD
model to simulate the inextensible surgical thread. Yu et al.
[59] propose a two-stage interaction strategy for the virtual
suturing simulation in a VR-based laparoscopic surgery sim-

Fig. 8 Suturing simulation. a Idle: there is no contact between the
needle and the blood vessel. b Puncture (in) resistance: first contact
between the head of the needle and the blood vessel with small deforma-
tion. c Puncturing: the needle pierces into the blood vessel. dPuncture
(out) resistance: the needle is trying to penetrate out the vascular wall
with small local deformation. e Puncture out: the needle punctures
through both blood vessels. f Threading: the surgical thread is passing
through the blood vessels. g Closing: when the last thread knot (blue)
hits on the outer wall of the blood vessel, the blood vessels deform to
close to each other bymoving the vertices of the insertion knots (black).
h Idle: one suturing loop is completed

ulator. However, these methods cannot be applied directly to
a mixed reality scenario. Based on a region tracking method
and the PBD deformation model, we introduce a tracking-
aware approach for the suturing simulation.

This procedure is divided into six phases: Idle, Puncture
resistance, Puncturing, Puncture out, Threading, and Clos-
ing; more details are shown in Fig. 8. Steps a–f demonstrate
the interaction between the needle and the blood vessels. g–i
show the stitching process. The position of the needle head
can be recovered by estimating the underlying needle model
via region-based constraints. The trigger of each step is based
on the tracking results of the needle and soft tubes along with
collision detection.

7 Experiments

In this section, we present the experimental results and eval-
uations, a user study is conducted as well to demonstrate the
validity of the framework. Please note that all of these exper-
iments are conducted under aWindows 10 PC equipped with
a 8 Cores 3.6 GHz CPU (Intel Core i9-9900KF), 32 GB of
RAM, a GPU (Nvidia RTX 2080Ti) with 11GB of GDDR6
memory capacity, and an Oculus Rift HMD. Two Logitech
webcams (1280× 720, 60fps) and a ZEDmini stereo camera
(2560 × 720, 60fps) are employed to construct the camera
system.

7.1 Tracking result

Our proposed vision-based system provides accurate and
robust tracking for multiple microsurgical instruments and
soft tubes. As shown in Fig. 4, in themicrosurgery simulation
scenario, the tracking targets are a needle, holder, forceps,
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Fig. 9 a Tracking of microsurgical instruments. b Three randomly
selected frames that show the tracking and simulation results of two
blood vessels

Table 1 Tracking accuracy and stability evaluation. Et and Er repre-
sent the translation error (mm) and rotation error (◦), respectively. Sr
and St are the standard deviation of Et and Er

Marker type Et Er St Sr

Scissors 0.71 0.15 0.30 0.13

Forceps 2.98 1.43 1.85 0.57

Needle holder 1.12 0.65 0.79 0.38

scissors, and soft silicone tubes. The experiment is conducted
in an indoor environment with natural illumination. Figure9
shows some results.

The accuracy and stability of the rigid tracking are eval-
uated by synthetic testing data, which are suggested in prior
work [15, 60]. The synthetic data are a series of sequen-
tial frames of one or two (depending on the instrument
type) platonic solids’ motion trajectories, which are ren-
dered via a standard rendering pipeline. The Rotation and
Translation data are recorded as the ground truth {R̂|t̂},
while the tracking result {R|t} is estimated by applying our
tracking method to the synthetic data. Then, the rotation
error and the translation error of each solid are given by
Er = arccos ((Tr(RT R̂) − 1)/2) and Et = ||t − t̂||. In
addition to the accuracy evaluation, the standard deviation of
errors is calculated to evaluate the tracking stability for each
instrument. Results are presented in Table 1; it shows that
our approach can achieve millimeter and even submillimeter
accuracy.

7.2 Modeling result

There are 36 liver models (31 for training, 5 for testing) and
66 spine vertebra models (57 for training, 9 for testing) are
collected to generate datasets. For each 3D model, both syn-
thetic X-ray images and normal images are rendered under
24 azimuth angles. The resolution of the images is 256×256.
Figure10a shows some samples data. After completing the
training processes, a normal image generator and a mesh
predictor are obtained. In the testing process, the input X-

Fig. 10 a Samples of training data. b Results of the liver and single
vertebra reconstruction

Fig. 11 Realistic rendering. a Texture layers and surface details of the
liver model. b Render results of a liver model. Blood vessel meshes are
built and assembled with the liver, as shown in the highlight area

ray image is extracted from a real X-ray scan and is then
transferred to the generator for normal image generation.
Subsequently, the mesh predictor takes the generated normal
image as input for mesh reconstruction. Some experimental
results can be found in Fig. 10. Please note that, because our
work focuses on 3D model reconstruction, the experiment is
built upon a segmentation assumption as shown in Fig. 10b,
the valid area is highlighted by the green contour line based
ona segmentation assumption.Asmentioned earlier, thePBR
pipeline can get object surface parameters from different tex-
tures. Thus, we use a couple of texture layers to provide base
color, scattering, normal, extra shadowand roughness param-
eters. This procedure and the rendering result are illustrated
in Fig. 11.

7.3 MHAR simulator

The experiment is conducted under a stable light condition
as shown in Fig. 12. Users are able to feel the real tactile
force by using real microsurgical instruments. The motion
and deformation data are captured for simulation. The real-
istic rendering frames are finally presented to users via the
goggles. To evaluate the performance efficiency, a real-time
analysis program is applied. There are four stages denoted in
Fig. 13. Its performance is acquired by calculating the frame

123



Amixed eality framework for microsurgery...

Fig. 12 Aprototype ofMR-basedMHAR simulation. aUser is allowed
to use real microsurgical instruments instead of haptic devices. b Input
frames that are captured by a camera. cOutput frames that are presented
to the user via the HMD

Fig. 13 Real-time performance analysis

rate within a sequence of frames. The experimental data are
sampled from 3621 frames. The average rendering rate is
20.25 frames per second with the resolution of 1280 pixels
by 720 pixels for each eye.

In addition, a post-processing module is developed and
incorporated into the system. It is an optional functionalmod-
ule, which allows programs to edit the final output frames,
such as adding image effects, adjusting image properties.
Figure14 shows a matting and compositing process.

To further evaluate the validation of this prototype system
and the framework, we conducted a small-scale user study
with 5 participants (aged 27–68), one of them is a senior
microsurgeon, others are average people. They were asked
to do some basic operations such as observing the virtual
scene, operating real instruments, and suturing. During the

Fig. 14 A frame breakdown of compositing output. a 3D vascular
model. b Input frame captured by the top-view camera. c Background
image, it also can be a surgery video or a real-time rendering virtual
scene of human internal organs. d and e Compositing outputs. Soft
tube is replaced with the real-time rendering vascular model; the green
background is changed to a real microsurgery picture

experiment, participants were asked to grade our framework
via Chan’s validation method for the microsurgery simulator
[4, 7], which is based on users’ subjective experiences. The
evaluation metrics is comprised of five aspects: Face Validity
refers to the degree to which the simulator resembles the real
surgical scenarios. Content Validity measures the ability to
assess a specificmicrosurgical skill, not other general knowl-
edge.Construct Validity representswhether the simulator can
differentiate skill levels among the users including beginners
and experts. Concurrent Validity indicates whether the sim-
ulator is comparable to the existing gold standard or ground
truth. Predictive Validitymeasures how much the simulation
training improved actual surgical skills.

The score given by participants is based on the compari-
son among prior microsurgery simulators that are validated
by Chan et al. [4]. The scores for prior simulators are retained
and used as the reference. We collect feedback from all five
participants and calculate the average rating for each valid-
ity. Table 2 shows the result that demonstrates our framework
makes a considerable improvement in microsurgery simula-
tion especially in the realism (Face Validity), and achieves
good results in Content Validity primarily because it was
specifically developed formicroanastomosis techniques. The
positive rating in Concurrent Validity reveals that the MR-
based simulation has the potential to become an effective
supplement to the traditional “gold standard” trainingmodel.
The success in achieving these promising results can be
attributed to two main factors. Firstly, the introduction of
modern rendering techniques has significantly improved the
graphics of our system compared to systems developed over a
decade ago. Secondly, the proposed visual-tactilemechanism
provides a stronger sense of immersion for users, making the
experience more realistic and closer to an actual surgical sce-
nario.

8 Conclusion

We present an MR framework for the MR-based micro-
surgery simulation, which provides users with real tactile
feedback instead of the simulated force fromHFDs.Avision-
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Table 2 Validation and Comparison

Simulators Face validity Content validity Construct validity Concurrent validity Predictive validity

Senior’s Microvascular simulator [61] + ++ ++ – –

Boston Dynamics Inc. Surg simulator [29] ++ ++ +++ – –

Algorithmic tools [62] +++ +++ ++ – –

Hand-motion analysis [63] + +++ +++ – –

MHAR simulator (ours) +++++ ++++ +++ ++ –

based tracking system is proposed to capture the motion and
deformation data for the simulation, which is one of the core
components of our framework. A learning-based modeling
method is proposed to generate the anatomical 3D mod-
els for the simulation of different microsurgical specialities.
Other components including suturing simulation, deforma-
tion simulation, realistic rendering, and post-processing are
also introduced. A prototype system is developed based on
this framework. Experimental results and user study have
shown both the feasibility and potentiality of our framework.
This work represents a solid first step in the development of
virtual surgery using MR technologies.

Limitations. Although this work achieves some promising
results, there are still some difficult challenges that need to
be studied and solved. The real-time performance of the
system is critical to the user experience; however, simul-
taneously tracking multiple surgical tools and soft tubes
dramatically increases the computational burden and affects
the final performance of our current system (see Fig. 13).
The unstable frame rate directly affects the system evalu-
ation and user experience. The long-standing problems of
vision-based tracking have been alleviated but not yet solved.
Tracking performancemay still sufferwhen there is illumina-
tion variation, motion blur, and partial occlusion. In addition,
the prototype system is developed mainly to demonstrate the
feasibility of the framework pipeline. Current user study is
too small and simple,which is far fromcomprehensive; there-
fore, the user study and the usability evaluation need to be
further strengthened and improved.

Future work. The main functional modules of the frame-
work are implemented on CPU except the rendering process.
SomeGPU-based virtual surgery systems have demonstrated
that the GPU accelerated computing can tremendously
improve the real-time performance of the system. There-
fore, a GPU-based implementation is imperative for the
follow-up development of our framework. Increasing the
number of sensors and introducing high-speed cameras to
the framework can be an effective approach to improve
the robustness of the tracking system. The balance between
computing resource and sensor quantity should be studied
properly. Learning-basedmethods on image illumination and
de-noising are also worth exploring. Furthermore, a more

comprehensive evaluation scheme would be conducted in
the near future.
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