
The Visual Computer
https://doi.org/10.1007/s00371-023-02976-x

ORIG INAL ART ICLE

LVDIF: a framework for real-time interaction with large volume data

Jialin Wang1,2 · Nan Xiang1 · Navjot Kukreja2 · Lingyun Yu1 · Hai-Ning Liang1

Accepted: 9 June 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The interest in real-time volume graphics has grown rapidly in the last few years, driven by the increasing demands from
both academia and industry. GPU-based volume rendering has been used in a wide variety of fields, including scientific
visualization, visual effects, and video games. Similarly, real-time volume editing has been used to build terrain and create
visual effects during game development; it has even become an integral part of gameplay in various video games (e.g.,
Minecraft). Nowadays, as the size of volume data increases, processing large volume data in real time is inevitable in
many modern application scenarios. However, manipulation and editing of large volume data are associated with various
challenges, such as dramatically increasing memory usage and computational burden. In this paper, we present a framework
for interactive manipulation and editing of large volume data to address these challenges. A robust and efficient method for
large signed distance function (SDF) volume generation is presented and incorporated into the framework. Also, a complete
implementationwith specializedGPUoptimization is introduced todemonstrate its usefulness and effectiveness—it is included
in the framework as well. The framework can be an easy-to-use middleware or a plugin that is able to integrate into game
engines for the development of various types of applications (e.g., video games). It can also contribute to the research looking
at large volume data from a user-centered perspective (e.g., for human–computer interaction researchers).

Keywords Volume graphics · Large volume data · Volume editing · Volume manipulation · Framework

1 Introduction

Manipulation and editing of models derived from volume
data in real-time have been an important topic over the past
few decades due to their widespread applications inmultime-
dia. Various technologies and methods have been developed.
Marching Cubes is an algorithm for creating polygonal rep-
resentations fromvolumetric data and iswidely applied in the
surface construction of 3D medical data [23]. More recently,
this algorithm has also been used in procedural terrain gen-
eration and gameplay within video games. As an important
volumetric representation, signed distance volume can like-
wise be used to create high-quality animation with volume
rendering methods such as ray marching [15]. In general,
rendering is a process of generating a 2D image from a 2D or
3D model but does not deal with interactive operations. To

B Hai-Ning Liang
haining.Liang@xjtlu.edu.cn

1 Department of Computing, School of Advanced Technology,
Xi’an Jiaotong-Liverpool University, Suzhou, China

2 Department of Computer Science, University of Liverpool,
Liverpool, UK

support interactions, other processes are also needed (e.g.,
collision detection). For example, despite raycasting-based
volume rendering being able to achieve good performance
on large volume data, raycasting cannot generate general
collision meshes that benefit a wide range of interaction sce-
narios (e.g., game physics that need to prevent objects from
colliding with each other). Also, most interaction scenarios
involving volumetric 3D models and mesh generation use
small volume data (typically, less than 10243) due to several
drawbacks caused by large volume data, especially the dra-
matically increasedmemoryusage and computational burden
[5–7,9,11,16,28,35]. In this era of information explosion, the
size of raw data has become very large, which has sparked the
desire for the interactivemanipulation and editingwith larger
volume data (interactive volume for short). Meanwhile, the
large computational cost and memory load caused by large
volume data need an effective approach to cope with, thereby
ensuring efficient interaction. A framework for processing
large volume data in real-time is expected to allow creat-
ing and editing large interactive volume models with ease,
such as subdividing volumetric 3Dmodels with richer details
and higher precision. It will be tremendously beneficial to a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-023-02976-x&domain=pdf
http://orcid.org/0000-0003-3600-8955


J. Wang et al.

number of applications in the fields of game development,
medical simulation, and human–computer interaction (HCI)
research.

Interactive volumemodels have become an important ele-
ment of gameplay in various video games. One example is
Minecraft, a famous volume-based game released in 2011.
Its creative gameplay is built upon an editable voxel world
and has attracted millions of players from all over the world.
Besides, the feature of interactive volume gives Minecraft
enormous potential in both areas of education and research.
Another typical case is Tilt Brush, a line rendering-based
3D painting application for virtual reality (VR). It allows
artists to draw 3D paintings in an immersive VR world [4].
However, a line rendering-based canvas limits users’ artis-
tic creation (e.g., the lack of color blending), which can be
enhanced by introducing a volume-based rendering pipeline
into the application. Although there are some professional
3D modeling applications with 3D sculpting support such as
Zbrush, 3D Coat, and AdobeMedium, editing with volumet-
ric 3D models requires more than 3D sculpting capabilities.
Efficient operations with volume data require a series of
optimizations on volume rendering and data structure (e.g.,
voxel quantization and parallel processing), which can be
simplified by using a set of optimization tools usually pre-
senting as a framework (a paradigm for creating solutions)
or a software library (a suite of data and code for developing
applications). For instance, volumetric applications used for
film production can use OpenVDB (an open-source software
library for working with sparse volumetric data) to simplify
the implementation of volume rendering-based visual effects
[25]. However, to our knowledge, there is no such framework
available for facilitating the development of applications that
need to implement large interactive volume models. More-
over, to make these editing features easily accessible, it is
helpful to integrate them into an existing game development
platform like Unity.1

Mesh generation from volume data (e.g., marching cubes
used for volume rendering via geometric primitives) often
cannot achieve satisfactory performance on large volume
data objects or models. There are several obstacles when
implementing mesh generation on large volume data sets.
For instance, increasing generated mesh number and vol-
ume data size can cause more memory usage and require
larger computational power which is difficult to satisfy in
many applications. Even array indexing of a large volume
set would lead to performance issues in some cases. As an
example, the .NET framework prior to v.4.5 (which is still
being used in Unity as the default version at the time of the
writing of this paper) does not support an array larger than
2GB, whereas a 10243 32-bit floating-point volume requires
4GB. A 10243 color volume with 32-bit RGBA color would

1 https://unity.com/.

also require 4GB. The size of large RGBA volume can be
compacted using data structure based on quantization. As
described later in this paper, this is one of the optimizations
in our framework. On the other hand, high frame rate and res-
olution are important to ensure a good user experience and
performance in virtual environments [36,37]. Our framework
aims to provide a series of optimization methods that allow
developers to access efficient operations with large interac-
tive volume data in virtual environments with high frame
rates and resolutions.

In this paper, we introduce a framework that focuses on
allowing the manipulation and editing of large volume data
models. In short, the main contributions of this work are
threefold:

1. A robust and efficient approach for the sign calcula-
tion of large SDF volume generation from triangle mesh
(Sect. 3.2);

2. A GPU-based strategy for optimization of interactive
10243 RGBA SDF volume (Sect. 3.3);

3. A lightweight framework that integrates the first two con-
tributions to support cross-device input for editing of
large volume models (Sect. 3.4).

Our framework, while lightweight, contains all the foun-
dational blocks needed for large volume data interaction,
including volume generation, rendering, editing, and storage.
It can benefit both artists looking to create artistic expres-
sions with high-level of detail and HCI and visualization
researchers interested in exploring interaction techniques for
large volume data sets.

2 Related work

2.1 Volume data and volume rendering

Volume data are commonly comprised of volumetric pix-
els (voxels). A voxel represents a specific grid value in a
regularly spaced, three-dimensional grid. The data type of a
voxel can be a binary, an integer, or a floating-point number.
A binary voxel uses 1 and 0 to represent the presence of a
voxel [27]. It has the smallest size inmemory due to its binary
format. However, binary voxels contain the least amount of
details. An integer voxel is widely used in Minecraft-like
environments, though it contains limited states or types for
the voxel. One of the typical floating-point voxels is a signed
distance field (SDF), which can be used to represent shapes
by signed floating-point voxels in a volume grid. Floating-
point voxels enable storing more details with higher memory
usage. Regarding the data structure of the voxel, vector and
scalar voxels are the two common structures used for vol-
ume data. A scalar voxel contains only one scalar such as

123

https://unity.com/


LVDIF: a framework for real-time interaction with large volume data

computed tomography (CT) and magnetic resonance imag-
ing (MRI) volume. In contrast, a vector voxel contains more
than one scalar value such as RGBA color.

Volume rendering is an essential technique in drawing
volume data. In some prior work, volume rendering with
raycasting typically has acceptable real-time performance
since it only calculates the values along the ray without con-
cerning reflection or refraction. Ray marching is a typical
raycasting approach that can use SDF in rendering volume
data. It has been used in making visual effects and special
rendering styles in video games (e.g., Claybook); it is even
capable of creating real-time animations (e.g., I. Quilez’s ani-
mation [15]). However, implementing the volume rendering
algorithm and various SDF primitives with high performance
requires strong programming skills. It can be especially time
consuming and challenging for game designers and digi-
tal artists who are not very experienced programmers. A
lightweight interaction framework may be handier for artists
and novices tomanipulate and edit large volume data because
it lowers the need for programming experience.

Although the performance of volume rendering can be
improved by raycasting techniques (e.g., ray marching), as
the most popular representation of model data, the mesh data
is still necessary for the rest of the processes, such as proce-
dural terrain and collision detection, which are essential to a
3D interactive environment. Marching cubes and dual con-
touring are two 3D surface construction algorithms that have
been widely used in terrain editors for both game develop-
ment and real-time gameplay in video games (e.g., NoMan’s
Sky). As stated, our proposed framework focuses on direct
manipulation and editing of volume data and real-time mesh
generation to support more interaction and model creation
scenarios.

2.2 Mesh generation from volume data

Marching cubes is one of the most popular 3D surface con-
struction algorithms because of its simple design that allows
easy implementation in different programming languages
[26]. One of its disadvantages is that the reconstructed shapes
or models lack sharp features. The other two algorithms, dual
marching cubes and dual contouring, can recover sharp fea-
tures [18,29]. Although sharp feature reconstruction is the
main advantage of dual marching cubes and dual contour-
ing, as pointed out earlier, marching cubes can lead to better
performance due to its simple design and implementation.
Moreover, increasing the size of the volume data can also
allowenhanced sharp features because further details are then
available (e.g., more complex shapes). Therefore, it is worth
designing a framework for interactive operations with large
volume data because of the additional benefits it brings to
various applications.

Binary volume can only produce Minecraft-like rough
(non-smooth) surfaces using marching cubes. The issue can
be solved by dual methods. For instance, surface nets is a typ-
ical dual method that generates smooth surfaces from binary
volume data when running multiple iterations [8]. Although
binary volume data tend to be less memory intensive, it does
not contain enough information formore complex interactive
volume. Moreover, technological progress is usually chasing
growth in demand. The optimization of 3D surface construc-
tion with Marching cubes on larger SDF volume deserves
further exploration because it is able to recover a much more
detailed structure of surfaces from a large-scale interactive
volume in a high-efficient way.

Octree and sparse voxel octree (SVO) are typical two
structures that can benefit volume rendering andmesh gener-
ation from volume data [2,21], as well as the chunk system,
a commonly used optimization method for a large interac-
tive mesh [24]. In addition, empty space skipping (ESS) is
considered an essential optimizationmethod for efficient vol-
ume rendering and mesh generation from volume data [31].
It optimizes the rendering process by ignoring the invisi-
ble components of the volume. For manipulation and editing
of volume data models and to improve performance, ESS
can also be employed by skipping the inactive components
of the volume. Although both SVO and chunk system can
achieve ESS optimization, the chunk system is more suitable
than SVO for large interactive volume, especially in process-
ing mesh data such as the mesh collider. The mesh collider
has better performance in smaller equal-size chunks rather
than SVO chunks which may produce a large mesh collider
with poor collision detection performance. A mesh collider
is helpful for interactions on the mesh generated from the
volume.

2.3 Optimization of mesh to SDF

Mesh to SDF is a composite process, which consists of differ-
ent stages with individually optimized algorithms including
optimization of distance field calculation and optimization
of sign calculation [17]. The calculation of SDF can be opti-
mized by using a ray map, a ray-based data structure that
preserves geometric meaning while reducing the amount of
work to be done for ray tests [20]. Liu et al. [22] propose a
multi-BVH structure and octree-based optimization of SDF
calculation.We use a simple octree-based overlapping chunk
system to keep the framework simple (see Sect. 3.1). How-
ever, SDF calculation can produce wrong signs for mesh
with discontinuous normal vectors at the edges and vertices
according to Andreas Bærentzen [1]’s work. Our framework
concentrates more on the robustness of the sign of SDF since
wrong signs can affect the rendering effect. Therefore, we
aim to solve this problem by designing a series of filters.

123



J. Wang et al.

In general, the calculationof signs for SDFcanbe regarded
as a problem of point in polygon (PIP) [12]. A recent
algorithm to solve the PIP problem for trianglemesh is gener-
alized winding numbers (GWN) [14]. Although it produces
robust results for SDF volume generation, its calculation pro-
cess is extremely time-consuming and less efficient. GWN
cannot be optimized by parallel computing (e.g., an overlap-
ping chunk system in Sect. 3.1) since GWN requires iterating
the entire mesh for each voxel. In other words, GWN is
inefficient for large SDF generation which needs to iterate
the entire mesh for a large number of voxels. Therefore, we
design a series of sign voxel filters (SVFs) to correct wrong
signs to generate high-quality SDF in a much more efficient
way (see Sect. 3.2).

2.4 Interactive rendering, manipulation, and editing
of large volume data

Interactive rendering, manipulation, and editing of volume
data can be used for various applications including surgi-
cal simulation, interactive medical image segmentation, and
terrain editing [3,10,34,38]. The issue we are focusing on
is a common problem, which is performance optimization
with large volume data. Data compression is one of the main
optimization methods in interactive volume rendering since
physical memory may not be sufficient to meet the demands
of large volume data operations in many cases [30]. For
example, a 10243 SDF volume (with the data type of 32-
bit floating-point) needs 4 GB memory which was difficult
to have in the early computers. However, nowadays, a stan-
dard high-end computer can have 24 GBRAMbut could still
face challenges dealing with large volume data in real time.
Moreover, marching cubes, one of the most popular 3D sur-
face construction algorithms, is more practical for volume
objects with small data size in real-time simulation [6,11,28]
(see Table 1). Therefore, our framework is designed for effi-
cient operations with large interactive volume data. In our

Table 1 Summary of papers that use one of themost popular 3D surface
construction algorithms, marching cubes for interactive volume manip-
ulation (RTR: real-time rendering; RTS: real-time simulation; the latter
are highlighted for readability)

Year Max volume size Scenario

2005 [9] 256 × 256 × 225 RTR

2006 [16] 256 × 256 × 256 RTR

2008 [7] 255 × 255 × 255 RTR

2009 [11] 128 × 128 × 128 RTS

2010 [28] 256 × 256 × 256 RTS

2010 [35] 277 × 244 × 222 RTR

2013 [5] 512 × 512 × 512 RTR

2015 [6] 97 × 4 × 55 RTS

framework, instead of focusing on improving compression
algorithms like some prior work, we are proposing a novel
optimization strategy to address challenges for large inter-
active volume, which is lightweight, easy to implement, and
can be integrated into common development platforms such
as Unity. It can be useful for HCI researchers and interaction
designers in creating and testing new interaction techniques.
In addition, artists can also benefit because a volume version
of Google’s Tilt Brush in VR could be possible. It can also
be used to generate procedural and editable volume worlds
to create new types of video games. To verify the validity and
applicability of the framework, we integrated it into the pop-
ular game engine Unity. Moreover, our modular design with
low coupling of the framework makes it easier to be used
in other game engines, third-party systems, and applications.
The source code is available for download (https://github.
com/Chaosikaros/LVDIF) so that other researchers can use
it or conduct further development with it.

3 LVDIF: large volume interaction
framework

3.1 Mesh to SDF via octree-based optimization

Algorithm 1 states a straightforward method to calculate an
SDF volume from a triangle mesh. It assumes that the mesh
has normal vectors that are pointing outward (some irregular
or broken mesh may have normal vectors that are pointing
inside). This algorithm can handle non-watertight models by
using normal vectors to calculate the sign of distance val-
ues (see Fig. 1c–d). The time complexity of Algorithm 1 is
O(n2) for a large SDF volume or a large mesh. As such, the
program would encounter performance issues when gener-
ating a very large SDF volume with a large mesh. To reduce
the time complexity, we use an octree of overlapping chunks
(calculated from the bounding box of the input mesh), which
contains mesh chunks of the entire mesh in the nodes of
the octree (see Fig. 1e). Each overlapping chunk contains
all the triangles that overlap with the corresponding nodes
of the bounding box, which is located in an octree structure
consisting of overlapping bounding boxes. Each overlapping
bounding box is a scaled original bounding box node in the
octree. The default scale factor is set to 2 in our following
experiments. In other words, the overlapping bounding box
is an octree of the scaled original bounding box.We use over-
lapping chunks to handle the triangles that overlap between
adjacent chunks. The basic idea is to find the closest non-
empty chunk (a chunk that contains triangles) in the octree
and then apply Algorithm 1 to this chunk. It is an application
of theESSoptimizationmethod that can reduce the time com-
plexity for a large mesh. The entire volume is also split into
smaller volume chunks to avoid performance issues when

123

https://github.com/Chaosikaros/LVDIF
https://github.com/Chaosikaros/LVDIF


LVDIF: a framework for real-time interaction with large volume data

Fig. 1 Comparison of an original Stanford bunny mesh and a mesh of
10243 SDF volume generated by marching cubes. a, b front views of
SDF mesh and Stanford bunny mesh; c, d bottom views of SDF mesh
and Stanford bunnymesh. eNormal (first row) and overlapping (second
row) octree data structures. Each cube has up to eight children and one
parent box

dealing with a large volume. The use of overlapping chunks
can guarantee the proper functioning of SDF generation for
large volume with a large mesh. For example, the CUDA
program of the optimized algorithm can generate 10243 SDF
volume from the Stanford bunny mesh (30,338 triangles) by
using 163 overlapping chunks. The entire running time is 17
min on a single NVIDIA RTX3090 GPU.

ALGORITHM 1: Triangle mesh to SDF volume algo-
rithm
for Voxel in V olumeGrid do

PointA = TransfromToBboxSpace(Voxel,MeshBbox);
DistanceMin = Max floating-point number;
for Triangle in Mesh do

PointB = ClosestPointOnTriangle(Triangle);
VectorT emp = PointB - PointA;
DistanceV = Length(VectorT emp);
if (DistanceV < DistanceMin) then

DistanceMin = DistanceV ;
VectorX = VectorT emp;
I ndexTri = IndexOfTriangle(Triangle);

end
end
NormalX = GetNormalByTri I ndex(I ndexTri );
if DotProduct(NormalX , V ectorX ) > 0 then

DistanceMin = -DistanceMin ;
end

end

3.2 Sign voxel filters for robust mesh to SDF

3.2.1 Design of sign voxel filter 1

Algorithm 1 can produce wrong signs for the mesh (e.g.,
Stanford dragon) with discontinuous normal vectors (e.g.,
reverse normal vectors, see Figs. 3a and 4a. The meshes are
converted by using marching cubes method.) at the edges
and vertices [1]. The wrong sign produced by Algorithm 1

Fig. 2 Example of 4 sign voxel filters for correcting wrong sign. a–d
are SVF1 to SVF4 with their roles during the SVF processing. The red
and green squares mean the objective sign and input sign of the filters.
The blue arrows indicate a sign overwriting operation from the start
voxel to the end voxel. The blue circle shows an inverse operation of
the objective sign

for discontinuous normal vectors is a regular noise with com-
mon features. Our SVFs consist of 4 different filters (from
SVF1 to SVF4) that target different noise features during the
wholeSVFprocess.Weuse theStanfordDragon (201,031 tri-
angles), Stanford Lucy (99,970 triangles), CyberWare Horse
(96,966 triangles), and Stanford Armadillo (345,944 trian-
gles) as examples to explain and demonstrate SVFs in Figs. 3,
4, and 5 (the time is measured by the code running on a sin-
gle NVIDIA RTX3090 GPU). The designs of SVFs need to
satisfy the common features of wrong signs in both inside
and outside of the SDF. Otherwise, they may generate a
hollow volume rather than a solid one. Most initial wrong
signs generated by Algorithm 1 (see Fig. 3a) have a common
feature: most wrong signs are far away from isosurface0 (iso-
surfacewith the value 0). Therefore, we isolate sign distances
with an absolute value bigger than a threshold (that is big-
ger than isosurface0, which is 2 in our case, after remapping
the distance values to the grid space) before applying SVFs
(except SVF4). A small threshold will affect some correct
signs, while a big one will likely miss some wrong signs.
This can also protect the near zero isosurface with fewer
wrong signs from being over-corrected by SVFs. SVF1 runs
on a 2D plane along one axis (y − z plane along the x axis
in default). The algorithm of SVF1 is to overwrite the objec-
tive sign whose previous sign in the previous plane along the
same axis is different from the objective one. Figure2a shows
the process of SVF1. −2 was overwritten by +2 because the
previous sign is positive in +3 (the previous sign that is dif-
ferent from the current one). SVF1 is simple but important
since it can convert all wrong signs to more regular linear
noise (see Fig. 3b).

123



J. Wang et al.

Fig. 3 Comparison and ablation study of SVFs. The meshes are con-
verted from 1283 SDF volumes generated by Algorithm 1 and different
SVFs. The edge size of the grid is equal to the edge size of the volume.
a Algorithm 1 without SVFs; b–e SVF1, SVF2, SVF3, and SVF4. The

time cost shown in a indicates the running time (in s) of Algorithm 1.
The time in b–e indicates the running time (in milliseconds) of each
SVF on the SDF volume from a

Fig. 4 Comparison of GWN algorithm and our proposed method on
generating different sizes of SDF volumes. a The original Stanford
dragonmesh; b is 1283 SDF volumes generated by the GWN algorithm.
c–e are 1283, 2563, and 10243 SDF volume generated by Algorithm 1

with all 4 SVFs; The time in b–e indicates the running time (in s) of
each algorithm. The red rectangle highlights a region that contains 3
triangles with a reverse normal vector

3.2.2 Design of sign voxel filter 2

The linear noise is caused by wrong signs close to the thresh-
old, which can be further corrected by SVF2. The first step
of SVF2 is to compare the sign of the summation in 3 × 3
matrix (detection matrix), including the objective sign with
itself (all 9 voxels). If the sign of the sum of signs is different
from the objective sign, SVF2 will overwrite the objective
sign when it finds an adjacent voxel whose absolute value is
greater than that of the objective voxel. As shown in Fig. 2b,
the sum of signs in the 3 × 3 matrix is +3 with a sign that
is different with objective voxel −3. And +4 is one voxel in
the matrix whose absolute value | + 4| is bigger than | − 3|.
Therefore, −3 was overwritten by +4. SVF2 tends to find
a wrong sign by applying a local area checking process. If
SVF2 detects a wrong sign, it will find a flow of the correct
sign to fix the wrong one, since sign distances are directional
and the border between wrong and correct signs has a fea-
ture of inverse sign flow. SVF2 can work alone without other
SVFs. Although SVF2 is efficient for regular wrong sign
features generated by SVF1, in the pilot study, we found it

inefficient for large SDF since it requires: (1) scanning at all
3 axes and (2) increasing sizes of detection matrix and sign
flow matrix along with the increased SDF volume size.

3.2.3 Design of sign voxel filter 3

SVF2 cannot handle the linear noise that is close to each
other when using 3×3 detection and sign flowmatrix. It will
leave some small isolated areas of (regional)wrong signs (see
Fig. 3c) that can be corrected by SVF3.Although a larger size
of detection and sign flowmatrix can also solve this problem,
it can cause efficiency issues for the whole SVFs process as
pointed out earlier. Therefore, we choose to use SVF3 instead
of a largermatrix size. SVF3 is introduced to findwrong signs
by comparing the objective sign with the signs of 4 neighbor
voxels in a same plane. If the 4 neighbor voxels have the
same signs, which are different from the objective voxel’s
sign (the feature of small isolated areas with wrong signs),
SVF3 will do an inverse operation for the objective sign (see
Fig. 2c).

123



LVDIF: a framework for real-time interaction with large volume data

3.2.4 Design of sign voxel filter 4

SVF1, SVF2, and SVF3 need to be looped for each plane
until there are no objective wrong signs detected. SVF4 is the
only filter that needs to be executed once. SVF4 can generate
a smooth isosurface0 (see Fig. 3e). It targets all remaining
wrong signs (for instance, wrong signsmissed by other SVFs
and wrong signs close to isosurface0) without the need for
a threshold (see Fig. 3d). It calculates the number of all 6
neighbor voxels (4 from the same plane, and 2 from the prior
and next plane) that have different signs with objective sign
in the center. If the number is bigger or equal to 4, SVF4 will
do an inverse operation on the objective sign (see Fig. 2d).

3.2.5 Results of sign voxel filters

Finally, our proposed SVFs can produce a smooth and high-
quality SDF volume, which is more efficient compared with
GWN (GWN shown in Fig. 4b and ours shown in Fig. 4c).
It works well for larger SDF volumes (see 2563 and 10243

SDF volume shown in Fig. 4d, e with the SDF generation
time of 84.23 and 2929.81 s and the SVFs processing time
of 0.84 and 56.84 s). Although GWN-based SDF generation
is also robust, it uses almost the same time (3095.19 s) but
only generates a 1283 SDF volume. Theoretically, it may
cost about 63h to generate a 10243 SDF volume, whereas
our method is about 76 times faster than GWN in this case.
Moreover, the SVFs combined with Algorithm 1 can also
generate robust SDF volume for various meshes (see Fig. 5).
Therefore, our SVFs-based method is efficient and robust for
large-scale SDF generation.

3.3 GPU-basedmesh generation for large volume
data

3.3.1 Design of the rendering pipeline

To take advantage of multiple GPUs, we use CUDA to
implement GPU-based mesh generation for large interactive
volumes. The marching cubes procedure in the framework
can run in other threads on other GPUs to release the GPU
memoryusage and computationalwork from themain thread.
Themain thread andmainGPU can focus onmesh rendering,
simulation, and interactions. The framework can be easily
implemented using OpenCL or Compute Shader. The ren-
dering module contains the steps of the GPU-based mesh
generation with mesh collider and vertex colors to support
real-time interactive operations. The marching cubes ker-
nel uses the same addressing method as the marching cubes
example project from official CUDA examples. Updating the
entire mesh from a large SDF volume can be too slow for
meaningful smooth interactions. There are three bottlenecks:
(1) the generation of the large mesh on the marching cubes

Fig. 5 Comparison of mesh (generated by marching cubes) and time
cost of 1283 SDF volumes generated by different algorithms. From left
to right: Stanford Lucy (99,970 triangles), CyberWare Horse (96,966
triangles), and StanfordArmadillo (345,944 triangles). aOriginalmesh;
b–d are SDF volume generated by the GWN algorithm, Algorithm 1
without SVFs, and Algorithm 1 with SVFs. The time indicates the run-
ning time (in s)

kernel; (2) data transfer between a largeGPUbuffer andCPU
buffer; and (3) the generation of a large mesh collider. There-
fore, it is necessary to use mesh chunks and volume chunks
as two ESS optimizations to achieve large volume. But it
is not the case that using more mesh chunks is better since
each mesh chunk needs one draw call. The number of draw
calls increases with the number of chunks, which can then
lower the rendering performance. When the size of chunks
increases (which results in the increased number of voxels
in one chunk), there is a negative impact on the efficiency
of the mesh generation caused by inactive parts of the vol-
ume data, since mesh generation from volume data does not
typically require frequent updates of the entire mesh (e.g., a
subtractionoperationof a 33 sphere primitive on a2563 chunk
needs to update the entire 2563 chunk). Therefore, there is
a trade-off between the size of mesh chunks and rendering
performance. In our experiments, the rendering pipeline has
the best performance (without updating the mesh chunks:
97.71 FPS or frames per second) with a chunk size 643 on a
(10243) SDF volume. The marching cubes kernel can run in
20.20 FPS with a chunk size 643 on a (10243) SDF volume

123



J. Wang et al.

Table 2 Rendering performance
and marching cubes kernel
performance on the SDF volume
(10243 and 5123, group by the
horizontal line) of the Stanford
bunny under different conditions

Volume size Chunk size C1 FPS C2 FPS C3 FPS C4 FPS

10243 2563 125.56 1.26 84.77 96.76

10243 1283 123.32 13.89 83.16 110.63

10243 643 115.50 20.20 97.71 114.70

10243 323 44.30 4.79 42.96 43.22

5123 2563 393.64 1.56 245.43 267.81

5123 1283 393.54 16.52 229.50 333.86

5123 643 369.91 52.08 260.45 343.34

5123 323 227.56 32.67 205.39 212.19

C1 Without updating, C2 updating one chunk, C3 individual thread, C4 individual GPU, FPS frames per
second (measured in unity). 10243 and 5123 SDF volume of Stanford bunny contain 7,339,856 and 1,822,144
triangles

using one NVIDIA RTX3090 in a 3840 × 2160 resolution
(see Table 2). In our framework, the marching cubes kernel
is in an individual thread (see the FPS of individual thread
(C3) from Table 2) to avoid FPS drop (see the FPS of updat-
ing one chunk (C2) from Table 2) in main thread caused by
blocked marching cubes kernel. It is an important optimiza-
tion to ensure a stable FPS in themain thread to allow smooth
input sampling in the input module. If the marching cubes
kernel is run in an individual GPU, the rendering FPS will
also be increased due to the individual GPU releases theGPU
memory usage and computational work from the main GPU
(see the FPS of individual GPU (C4) from Table 2). Such a
multiple GPU architecture is also one of the advantages of
our framework.

3.3.2 Design of the voxel data structure

To ensure good performance of random read/write opera-
tions, the entire volume data are loaded into GPU memory
instead of using a compressed I/O stream. The generated vol-
ume of this framework contains both an SDF value (distance
value) and an RGAB color value in each vector voxel. We
use a 2Dunsigned short integer (ushort2) dictionary to reduce
memory usage. The vector voxel is in a ushort2 format (2D
vector in X and Y ). X represents the key of the SDF value in
the SDF dictionary, while Y represents the key of the RGBA
color value in the color dictionary. The use of volume data
and 3D surface construction for interaction can use only an
isovalue of 0 for the isosurface. In this case, most voxels with
an absolute value of SDF greater than 0 have little contribu-
tion to a collision-based interactive volume. Therefore, we
use an SDF dictionary (a floating-point dictionary) to decide
the decimal places for each possible SDF value. The SDF
value in the SDF volume can be split into two groups: close
(Group A) and far (Group B) from the isovalue (with 0 as
default). The floating-point number in Group A has 3 deci-
mal places which are enough for calculating smooth normal

Fig. 6 A slice from a 323 SDF volume of a sphere. The red text means
negative SDF values. The blue text means positive SDF values. The
black cell means Group A: floating-point data with 3 decimal places in
{−4.001, . . . , 4.001}. The gray cell means Group B: the rest of 65,535
floating-point data in {−2880.6, . . . ,−4.1} ∪ {4.1, . . . , 2880.6}

vectors. Two or fewer decimal places will likely produce
incorrect normal vectors. Four or more decimal places will
cause a narrower range of the SDF dictionary, which then
cannot be used for large volume (≥ 10243) data). The range
of −4.001 to 4.001 is adjustable. Group B contains the rest
positive and negative floating-point numbers with 1 decimal
place in the rest of the 65,535 pairs ({−2880.6, . . . ,−4.1} ∪
{4.1, . . . , 2880.6}) in the SDF dictionary (see Fig. 6).

Although one ushort can only represent 65,535 integers,
it is enough for volume with an edge (E) × √

3 (space diag-
onal, the biggest possible value in a 3D SDF volume) <
2880.6. For instance, the biggest volume is 16633 for aGroup
A of {−4.001, . . . , 4.001} (2880.6 ÷ √

3 ≈ 1663.12). The
original SDF value needs to be remapped from the origi-
nal bounding box space to the SDF volume space (that is
{−E

√
3, . . . , E

√
3}). The color dictionary can store 65,535

indexes of different colors. Such voxel structure can change
the storage of SDF value and RGBA color to 2 ushorts. The
storage size can be reduced to 4 bytes (ushort2) instead of
8 bytes (32-bit floating-point data + 32-bit RGBA color). A

123



LVDIF: a framework for real-time interaction with large volume data

Fig. 7 Interactive editing examples using a mouse-based brush on a
10243 RGBA SDF volume of the Stanford Bunny. a Basic union and
subtraction operations of the 2003 cube and sphere primitives; b brush
input with a radius of 15 for painting and erasing using a mouse: (from
top to bottom): basic brush, dynamic brush, and drill brush; c subtraction
on a union of three 2003 sphere primitives with different colors; and d
a painting brush example in a radius of 3 on a 2003 cube primitive

10243 RGBA SDF volume in SDF and color dictionary for-
mat needs 4 GB of GPU memory. If the isovalue is fixed and
color is not needed, it is possible to use one 8-bit unsigned
char (uchar) and a smaller uchar SDF dictionary with a
smaller Group A of SDF volume for the voxel to save more
space since only Group A of SDF volume is necessary in this
case (similar to SVO volume).

3.4 Input module

3.4.1 Design of the volume input system and color
rendering

We use the sphere and cube SDF volumes as the two vol-
ume brush primitives. The function for the SDF primitives
and basic union and subtraction operations are adapted from
Quilez’s work.2 The brushing method is modified from a
commonmethod for 2D images. The raw input of the brush is
a set of 3D sampling points from the input device. Smoothing
is done via interpolation on the points with a fixed interval.

Figure7a shows the results of the basic union and sub-
traction operations with 2003 cube and sphere primitives on
a 10243 RGBA SDF volume of the Stanford Bunny. We also
designed two more brushes: (1) a dynamic brush with differ-
ent brush point sizes, and (2) a drill brush for gesture-based
input such as using hand motions or with VR controllers
(see Fig. 7b). We apply tetrahedral interpolation in the color
rendering [19]. We take 8 voxel colors and volume space
coordinates from 8 cube vertices in a cube space in marching
cubes as the voxel color space. The color is calculated inside
the fragment shader by applying tetrahedral interpolation to

2 https://iquilezles.org/www/articles/distfunctions/distfunctions.htm.

Fig. 8 Interactive manipulation and editing of a 5123 RGBA SDF vol-
ume of Stanford bunny in a VR 3D scenario. a A drawing example
with different brush radii (Chunk size: 643); b a writing example with
a brush radius of 3 (Chunk size: 643); c interaction with a sphere that
has a rigid body (Chunk size: 163)

Fig. 9 2 2563 volume models generated by procedural modeling. a
colorful 3D spiral lines; b a dice

the pixel volume space coordinate, which can be calculated
by 3D triangle barycentric coordinate from the 3 uninterpo-
lated triangle vertices and interpolated barycentric coordinate
from the vertex shader. The updating of mesh chunks is opti-
mized by using a bounding box octree of the input brush set.
The rendering pipeline only updates the mesh chunks that
are overlapping with bounding box nodes in the octree.

3.4.2 Applications based on input module

VR controllers can be used in 3D painting scenarios and
applications such as Google’s Tilt Brush [33]. However, Tilt
Brush uses a line renderer that contains no actual 3D voxels,
it can be combined with volume graphics to support more
abundant interaction scenarios like constructive solid geom-
etry (CSG) used in solid modeling. Our framework can be
used to develop 3D painting applications with the generated
mesh with colors in each voxel and triangle (see Fig. 8 (a)
to (c)). We have used a 5123 RGBA SDF volume to intro-
duce collision detection in VR for two reasons. First, a 5123

RGBA SDF volume can run above 90 FPS (frames per sec-
ond) in VRwithout updating the chunks. Second, interaction

123

https://iquilezles.org/www/articles/distfunctions/distfunctions.htm


J. Wang et al.

Fig. 10 A schematic diagram of our framework for real-time manipulation and editing of large volume data

with a rigid body requires convex mesh colliders, which can
produce a better shape in a 163 chunk size since convexmesh
colliders reduced themesh to 255 triangles.Moreover, a 5123

volume has better performance than a 10243 volume with a
chunk size of 163 because of the lower number of chunks
and draw calls. Although non-convex mesh colliders can
handle raycast-based interactions (e.g., brush input using the
mouse), it has poor performance for collision detection with
colliders. Therefore, a 5123 volume with a chunk size of 163

is one of the ideal settings for collision detection on a mesh
collider generated from a large volume in VR. However, con-
vex mesh colliders cannot handle a small brush radius such
as 3. Although a non-convex mesh collider can resolve this
issue, it does not have a good performance on a large mesh.
One possible solution is to implement mesh simplification
for facilitating the generation of mesh colliders.

The integration of other input devices is similar to the
mouse and the VR controller. Users only need to write a
class to implement a derived class based on an abstract class
(for input device integration) provided by our framework. It
is convenient to integrate a new input device as long as the
device drivers from manufacturers are available. For exam-
ple, the tracking positions from six degrees of freedom (6
dof) hand gestures (e.g., Meta Quest hand tracking) [32],
and haptic devices (e.g., Phantom Omni) can be set as the
input in the derived input device classes. Users can use addi-
tional input devices with tracking ability in our framework
by implementing new input device classes which are derived
from the abstract class. Such cross-device input support is
one of the important features of our framework.

The volume input manager in our framework is equivalent
to CSG. Therefore, its input actions can be easily recon-
structed by scripting. We provide such scripting language
consisting of a set of application programming interface
(API) and an interpreter that can convert the script to input
actions to the volume input manager. Users can also build 3D
models bywriting the scripting language (seeFig. 9). It is also
possible to use it for other proceduralmodeling processes like
run-time terrain deformation. We also implement an action
recorder and its player in our framework based on the script-

ing language and interpreter. The recorded input actions can
be used to reconstruct a CSG-based volume model. Artists
can use the recorded input actions to spread their volume
artworks instead of using the volume file itself. The size of
the input actions file is very small compared to the size of
the volume files. It could be an alternative volume media for
such CSG-based volume models.

3.5 Discussion

Figure10 shows the three main modules in our framework.
The algorithm and optimization details have been presented
hereinbefore, among which Sects. 3.1 and 3.2 introduce a
robust and efficient method of the generation of large SDF
volume, which is an essential component of our framework.
It allows users to convert usual triangle mesh to high qual-
ity large volume data in an efficient way compared to prior
work. Our SVF filters do not require a full iteration of all
triangles but GWN does. It means SVF filters can save much
time for SDF volume generation from large triangle meshes.
Moreover, our method is GPU-friendly and can benefit fur-
ther from the powerful massive parallel GPU computation
capabilities compared to the GWN algorithm. Section3.3
introduces a GPU-based mesh generation pipeline for large
volume data with a novel SDF dictionary method to save
GPUmemory. Section3.4 introduces the function of the input
module in our framework.We also discuss several challenges
resulting from the application of the usual chunk system
when our framework is integrated into a game engine. The
benefits of convenient interaction components (e.g., mesh
collider and input system) brought by game engines come
with some limitations (e.g., FPS drops), which need a trade-
off and further improvement. 3D sculpting is also one of the
main applications of interactive volume. However, a sculpt-
ing software or generalmodeling software ismostly designed
for single-input devices such as themouse andVR controller,
which do not provide native support for cross-device input.
Therefore, cross-device input support is one of the main fea-
tures of our framework (see Table 3).

123



LVDIF: a framework for real-time interaction with large volume data

Table 3 Comparison of different software or frameworks (our frame-
work (ours), (a) professional 3D modeling software (e.g., 3D Coata);
(b) Tilt Brushb, and (c) other interactive volume frameworks for game
engines (e.g., MudBunc) for 3D modeling or 3D painting

Features Ours (a) (b) (c)

Cross-device input support Y N N N

Large volume (≥ 10243) support Y Y N N

Game integration Y N Y Y

CUDA integration Y Y N N

ahttps://3dcoat.com/
bhttps://www.tiltbrush.com/
chttps://longbunnylabs.com/mudbun/

Our motivation is that there is no software or framework
that provides both proper generation of large volume data
and sufficient editing functions for large volume data, which
supports different platforms (e.g., VR and desktop), various
input devices, and different interaction scenarios. We believe
our framework can fill this gap. With our framework, artists
can create artistic expressions with a high level of detail by
using creative input methods. Also, HCI and visualization
researchers can use it to explore interaction techniques for
large volume data with various input devices and on different
platforms. Moreover, since our framework is open-sourced,
we plan to collect feedback from researchers and other users
who use it in various scenarios to continue its improvement
and development.

4 Limitations and future work

Theexperimental results demonstratedour proposed approaches
can efficiently dealwith large volume generation, interaction,
and visualization. Here, we present the challenges ahead to
further develop and improve this framework in the future.
A potential issue is that the SVF4 is likely to over-correct
the signs of voxels when processing small size of volumes
(e.g., one tooth is missing in the 1283 volume in Fig. 4c).
However, in our experiments, such over-correction is not a
problemwhen the volume size is large enough (e.g., themiss-
ing tooth in 1283 does not occur in the 2563 and10243 volume
in Fig. 4c–e). In the future, we plan to improve the SVF4 for
better performance on the small SDF volume.

We did not optimize the GPU pipeline of marching cubes
implementation in order to keep the framework simple.
Instead of improving the efficiency of the marching cubes
pipeline, we assign an individual thread to it to avoid FPS
drop (see Table 2). However, amore efficient marching cubes
pipeline will increase the efficiency of user input. Therefore,
we plan to optimize themarching cubes pipeline in the future.

In addition, although the volume data can be exported
and imported as a binary file in our framework, we have not

explored improving the storage efficiency of the large volume
data. For instance, a 10243 RGBA SDF volume (in ushort2
format without further compression) can produce a 4GB file.
For a 4GB RGBA SDF volume of the Stanford bunny, it
can be compressed to 1.12GB using LZMA, an optimized
version of the LZ77 compression algorithm.3 However, we
have not used compression methods on the volume struc-
ture except for the ushort2 dictionary. An efficient volume
compression method could be added to the framework. Sim-
ilarly, along with improving storage efficiency, future work
can also explore optimization mechanisms to increase mem-
ory efficiency. The generation of a 10243 RGBASDFvolume
requires about 5 GB of GPU memory. This means that it is
difficult to generate a larger RGBA SDF volume, such as
20483, whichmay requiremore than 40GB ofGPUmemory.
As such, it will be useful to have a more efficient mechanism
that can lowermemory requirements tomake interactingwith
larger volume more accessible.

As described earlier (see Sect. 1), we did not imple-
ment raycasting for the volume rendering pipeline to allow
richer collision-based interactions. Gesture-based interac-
tions without collision detection or the generation of a
mesh and mesh colliders can provide better performance
for raycasting. We plan to implement raycasting for efficient
interactions that require no collision detection. In addition,
the parallel computation of the framework is implemented
in CUDA and integrated with Unity to take advantage of
user input and multiple GPUs. Compute Shader, while not as
mature as CUDA for parallel computing, can be an alterna-
tive to open the framework to a wider range of GPUs. This
approach and others can be explored in the future. We will
also try to fine-tune existing large language models (LLMs)
to create a new model that is specific to the use case of our
scripting language via approaches like low-rank adaptation
(LoRA), a training method that accelerates the training of
large models while consuming less memory [13].

5 Conclusion

This paper introduced a framework for real-time interaction
with large volume data. The framework contains a series
of basic blocks that have been fully implemented in this
work, including a robust and efficient approach for the sign
calculation of large SDFvolume data generation, aGPUopti-
mization strategy for enabling interactive operations with the
10243 RGBA SDF volume, and several brush editing tools.
Examples with 2D and 3D input modalities have shown pos-
itive results. The framework can be easily adapted to support
projects that require large interactive volume applications.
It can also benefit interactive operations with large volume

3 https://www.7-zip.org/7z.html.

123

https://3dcoat.com/
https://www.tiltbrush.com/
https://longbunnylabs.com/mudbun/
https://www.7-zip.org/7z.html


J. Wang et al.

data that require a high level of visual details. The code is
available on GitHub4 to allow other researchers to use it and
conduct further research with it.

Supplementary Information The online version contains supplement-
ary material available at https://doi.org/10.1007/s00371-023-02976-x.

Acknowledgements We thank the reviewers for their valuable time
and insightful comments that helped improve our paper. This research
was partly funded by Xi’an Jiaotong-Liverpool University Special Key
Fund (#KSF-A-03), the National Natural Science Foundation of China
(#62272396), and XJTLU Research Development Fund (#RDF-21-02-
065, #RDF-19-02-11).

Declarations

Conflict of interest There are no conflicts of interest to report. Other
relate data and materials can be available upon reasonable request to
the corresponding author.

References

1. Andreas Bærentzen, J.: Robust generation of signed distance fields
from triangle meshes. Volume Graphics 2005 Eurographics/IEEE
VGTC Workshop Proceedings—4th International Workshop on
Volume Graphics (IMM), pp. 167–175 (2005). https://doi.org/10.
1109/vg.2005.194111

2. Boada, I., Navazo, I., Scopigno, R.: Multiresolution volume visu-
alization with a texture-based octree. Vis. Comput. 17(3), 185–197
(2001)

3. Bürger, K., Krüger, J., Westermann, R.: Direct volume editing.
IEEETrans.Vis.Comput.Graph.14(6), 1388–1395 (2008). https://
doi.org/10.1109/TVCG.2008.120

4. Chittenden, T.: Tilt Brush painting: chronotopic adventures in
a physical-virtual threshold. J. Contemp. Paint. 4(2), 381–403
(2018). https://doi.org/10.1386/jcp.4.2.381_1

5. Cirne, M.V.M., Pedrini, H.: Marching cubes technique for vol-
umetric visualization accelerated with graphics processing units.
J. Braz. Comput. Soc. 19(3), 223–233 (2013). https://doi.org/10.
1007/s13173-012-0097-z

6. Cristie, V., Berger, M., Bus, P., Kumar, A., Klein, B.: CityHeat, pp.
1–4 (2015). https://doi.org/10.1145/2818517.2818527

7. Dyken, C., Ziegler, G., Theobalt, C., Seidel, H.P.: High-speed
marching cubes using histopyramids. Comput. Graph. Forum
27(8), 2028–2039 (2008). https://doi.org/10.1111/j.1467-8659.
2008.01182.x

8. Gibson, S.F.: Constrained elastic surface nets: Generating smooth
surfaces from binary segmented data. In: International Conference
on Medical Image Computing and Computer-Assisted Interven-
tion, pp. 888–898 (1998)

9. Goetz, F., Junklewitz, T., Domik, G.: Real-Time Marching Cubes
on the Vertex Shader. Eurographics 2005, 1–4 (2005)

10. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering
of large volume data sets. Proc. IEEEVis. Confer.D, 53–60 (2002).
https://doi.org/10.1109/visual.2002.1183757

11. Hoetzlein, R., Höllerer, T.: Interactive water streams with
sphere scan conversion. Proceedings of I3D 2009: The 2009
ACM SIGGRAPH Symposium on Interactive 3D Graphics and

4 https://github.com/Chaosikaros/LVDIF.

Games 1(212), 107–114 (2009). https://doi.org/10.1145/1507149.
1507166

12. Hormann, K., Agathos, A.: The point in polygon problem for arbi-
trary polygons. Comput. Geom. 20(3), 131–144 (2001). https://doi.
org/10.1016/s0925-7721(01)00012-8

13. Hu, E.J., Shen, Y.,Wallis, P., Allen-Zhu, Z., Li, Y.,Wang, S.,Wang,
L., Chen,W.: LoRA: low-rank adaptation of large languagemodels,
pp. 1–26 (2021)

14. Jacobson, A., Kavan, L., Sorkine-Hornung, O.: Robust inside-
outside segmentation using generalized winding numbers. ACM
Trans. Graph. (2013). https://doi.org/10.1145/2461912.2461916

15. Jeremias, P., Quilez, I.: Shadertoy: live coding for reactive shaders.
In: ACM SIGGRAPH 2013 Computer Animation Festival, p. 1
(2013)

16. Johansson,G.,Carr,H.:Acceleratingmarching cubeswith graphics
hardware. In: Proceedings of the 2006 Conference of the Center
for Advanced Studies on Collaborative Research, pp. 39–es (2006)

17. Jones, M.W., Bærentzen, J.A., Sramek, M.: 3D distance fields: a
survey of techniques and applications. IEEE Trans. Vis. Comput.
Graph. 12(4), 518–599 (2006). https://doi.org/10.1109/TVCG.
2006.56

18. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of
Hermite data. In: Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 339–346
(2002)

19. Kasson, J.M., Plouffe,W., Nin, S.I.: Tetrahedral interpolation tech-
nique for color space conversion. In: Device-Independent Color
Imaging and Imaging Systems Integration, vol. 1909, pp. 127–138
(1993)

20. Krayer,B.,Müller, S.:Generating signeddistancefields on theGPU
with ray maps. Vis. Comput. 35(6–8), 961–971 (2019). https://doi.
org/10.1007/s00371-019-01683-w

21. Laine, S., Karras, T.: Efficient sparse voxel octrees. IEEE Trans.
Vis. Comput. Graph. 17(8), 1048–1059 (2010)

22. Liu, F., Kim, Y.J.: Exact and adaptive signed distance fields compu-
tation for rigid and deformable models on GPUS. IEEE Trans. Vis.
Comput. Graph. 20(5), 714–725 (2014). https://doi.org/10.1109/
TVCG.2013.268

23. Lorensen,W.E., Cline, H.E.: Marching cubes: a high resolution 3D
surface construction algorithm. In: Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1987, vol. 21, no. 4, pp. 163–169 (1987). https://doi.
org/10.1145/37401.37422

24. Mawhorter, P., Mateas, M.: Procedural level generation using
occupancy-regulated extension. In: Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, pp. 351–
358 (2010)

25. Museth, K., Lait, J., Johanson, J., Budsberg, J., Henderson, R.,
Alden, M., Cucka, P., Hill, D., Pearce, A.: OpenVDB: an open-
source data structure and toolkit for high-resolution volumes. In:
ACM SIGGRAPH 2013 Courses, p. 1 (2013)

26. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm.
Comput. Graph. 30(5), 854–879 (2006)

27. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal
models using volumetric techniques. IEEE Trans. Vis. Comput.
Graph. 9(2), 191–205 (2003)

28. Qin, J., Chui, Y.P., Pang, W.M., Choi, K.S., Heng, P.A.: Learn-
ing blood management in orthopedic surgery through gameplay.
IEEE Comput. Graph. Appl. 30(2), 45–57 (2010). https://doi.org/
10.1109/MCG.2009.83

29. Schaefer, S.,Warren, J.: Dualmarching cubes: primal contouring of
dual grids. Comput. Graph. Forum 24(2), 195–201 (2005). https://
doi.org/10.1111/j.1467-8659.2005.00843.x

30. Schneider, J., Westermann, R.: Compression domain volume ren-
dering. In: IEEE Visualization, 2003. VIS 2003, pp. 293–300
(2003). https://doi.org/10.1109/VISUAL.2003.1250385

123

https://doi.org/10.1007/s00371-023-02976-x
https://doi.org/10.1109/vg.2005.194111
https://doi.org/10.1109/vg.2005.194111
https://doi.org/10.1109/TVCG.2008.120
https://doi.org/10.1109/TVCG.2008.120
https://doi.org/10.1386/jcp.4.2.381_1
https://doi.org/10.1007/s13173-012-0097-z
https://doi.org/10.1007/s13173-012-0097-z
https://doi.org/10.1145/2818517.2818527
https://doi.org/10.1111/j.1467-8659.2008.01182.x
https://doi.org/10.1111/j.1467-8659.2008.01182.x
https://doi.org/10.1109/visual.2002.1183757
https://github.com/Chaosikaros/LVDIF
https://doi.org/10.1145/1507149.1507166
https://doi.org/10.1145/1507149.1507166
https://doi.org/10.1016/s0925-7721(01)00012-8
https://doi.org/10.1016/s0925-7721(01)00012-8
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1109/TVCG.2006.56
https://doi.org/10.1007/s00371-019-01683-w
https://doi.org/10.1007/s00371-019-01683-w
https://doi.org/10.1109/TVCG.2013.268
https://doi.org/10.1109/TVCG.2013.268
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/MCG.2009.83
https://doi.org/10.1109/MCG.2009.83
https://doi.org/10.1111/j.1467-8659.2005.00843.x
https://doi.org/10.1111/j.1467-8659.2005.00843.x
https://doi.org/10.1109/VISUAL.2003.1250385


LVDIF: a framework for real-time interaction with large volume data

31. Sherbondy, A., Houston, M., Napel, S.: Fast volume segmenta-
tion with simultaneous visualization using programmable graphics
hardware. In: IEEE Visualization, 2003. VIS 2003, pp. 171–176
(2003)

32. Shi, R., Zhang, J., Yue, Y., Yu, L., Liang, H.N.: Exploration of bare-
hand mid-air pointing selection techniques for dense virtual reality
environments. In: Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI EA ’23. Asso-
ciation for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3544549.3585615

33. Shi, R., Zhu, N., Liang, H.N., Zhao, S.: Exploring head-based
mode-switching in virtual reality. In: 2021 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR), pp. 118–127
(2021). https://doi.org/10.1109/ISMAR52148.2021.00026

34. Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing
of GigaSample terrain fields. Comput. Graph. Forum 31(2), 383–
392 (2012). https://doi.org/10.1111/j.1467-8659.2012.03017.x

35. Tzevanidis, K., Zabulis, X., Sarmis, T., Koutlemanis, P., Kyriazis,
N., Argyros, A.: From multiple views to textured 3d meshes: a
GPU-powered approach. In: Proceedings of the 11th European
Conference on Trends and Topics in Computer Vision-Volume Part
II, pp. 384–397 (2010)

36. Wang, J., Shi, R., Xiao, Z., Qin, X., Liang, H.N.: Effect of render
resolution on gameplay experience, performance, and simulator
sickness in virtual reality games. Proc. ACMComput. Graph. Inter-
act. Tech. (2022). https://doi.org/10.1145/3522610

37. Wang, J., Shi, R., Zheng, W., Xie, W., Kao, D., Liang, H.N.: Effect
of frame rate on user experience, performance, and simulator sick-
ness in virtual reality. IEEE Trans. Vis. Comput. Graph. 29(05),
2478–2488 (2023). https://doi.org/10.1109/TVCG.2023.3247057

38. Wu, J., Wang, D., Wang, C.C., Zhang, Y.: Toward stable and realis-
tic haptic interaction for tooth preparation simulation. J. Comput.
Inf. Sci. Eng.10(2), 1–9 (2010). https://doi.org/10.1115/1.3402759

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Jialin Wang is currently a Ph.D
student at Xi’an Jiaotong-
Liverpool University, Suzhou,
China. His re-search interests focus
on virtual reality, robotics, and
computer graphics.

Nan Xiang is a Lecturer at the
Department of Computing, Xi’an
Jiaotong-Liverpool University,
Suzhou, China. He received his
B.S degree (2012) in software engi-
neering from Nanchang Univer-
sity (China), MA (2017) in ani-
mation from Communication Uni-
versity of China, and Ph.D (2021)
in computer animation from
National Centre for Computer Ani-
mation, Bournemouth University
(UK). His current research inter-
ests include 3D reconstruction,
computer animation, virtual
surgery, and XR technologies.

Navjot Kukreja is a Lecturer
(Assistant Professor) in the Depart-
ment of Computer Science at the
University of Liverpool. His main
area of interest is in parallel and
distributed computing, especially
high-performance computing. He
looks at this from an angle of
Domain-specific languages, “Can
we describe the problem at a high
level and then use code genera-
tion and just-in-time compilation
to do the performance optimiza-
tions automatically?”. He has
worked on PDE solvers, specifi-

cally inverse problems based on PDEs—around building images of the
earth. His more recent work is in the direction of integrating statistical
methods including deep learning into such a toolchain.

Lingyun Yu is an Associate Pro-
fessor at the Department of Com-
puting, Xi’an Jiaotong-Liverpool
University, Suzhou, China. She
obtained the PhD degree on Sci-
entific Visualization and Interac-
tion Techniques from the Univer-
sity of Groningen in 2013. After
that, she worked as a Lecturer
and Associate Researcher at
Hangzhou Dianzi University from
2014 to 2017, and a Postdoctoral
Research Fellow at the Univer-
sity of Groningen and the Uni-
versity Medical Center Groningen

from 2016 to 2019. Her research focuses on interactive visualiza-
tion, immersive visualization, human–computer interaction and vir-
tual/augmented reality.

123

https://doi.org/10.1145/3544549.3585615
https://doi.org/10.1109/ISMAR52148.2021.00026
https://doi.org/10.1111/j.1467-8659.2012.03017.x
https://doi.org/10.1145/3522610
https://doi.org/10.1109/TVCG.2023.3247057
https://doi.org/10.1115/1.3402759


J. Wang et al.

Hai-Ning Liang is Professor of
Computing and inaugural Head of
the Department of Computing at
Xi’an Jiaotong-Liverpool Univer-
sity (XJTLU), Suzhou, China. He
is also Deputy Director of the
Suzhou Key Laboratory of Intel-
ligent Virtual Engineering and the
XJTLU Virtual Engineering Cen-
ter. He completed his PhD in Com-
puter Science from Western Uni-
versity, Canada. Prior to joining
XJTLU, he was with the Univer-
sity of Queensland in Australia
and the University of Manitoba in

Canada. He does research in human–computer interaction, focusing on
virtual/augmented reality and gaming technologies.

123


	LVDIF: a framework for real-time interaction with large volume data
	Abstract
	1 Introduction
	2 Related work
	2.1 Volume data and volume rendering
	2.2 Mesh generation from volume data
	2.3 Optimization of mesh to SDF
	2.4 Interactive rendering, manipulation, and editing of large volume data

	3 LVDIF: large volume interaction framework
	3.1 Mesh to SDF via octree-based optimization
	3.2 Sign voxel filters for robust mesh to SDF
	3.2.1 Design of sign voxel filter 1
	3.2.2 Design of sign voxel filter 2
	3.2.3 Design of sign voxel filter 3
	3.2.4 Design of sign voxel filter 4
	3.2.5 Results of sign voxel filters

	3.3 GPU-based mesh generation for large volume data
	3.3.1 Design of the rendering pipeline
	3.3.2 Design of the voxel data structure

	3.4 Input module
	3.4.1 Design of the volume input system and color rendering
	3.4.2 Applications based on input module

	3.5 Discussion

	4 Limitations and future work
	5 Conclusion
	Acknowledgements
	References


