
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022400

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

GlyphCreator: Towards Example-based Automatic Generation of
Circular Glyphs

Lu Ying, Tan Tang, Yuzhe Luo, Lvkeshen Shen, Xiao Xie, Lingyun Yu, Yingcai Wu

Fig. 1. Circular glyphs in (a1) EnsembleLens [68], (b1) SmartAdP [35], (c1) VisMatcher [28], (d1) VAICo [51], (e1) SeqDynamics [65],
(f1) Visual IVO Editor [38], (g1) DropoutSeer [8], (h1) MutualRanker [34]. (a2)-(h2) shows the circular glyphs generated by GlyphCreator
based on (a1)-(h1), respectively. Dashed arrows are used to associate glyph components with corresponding categories.

Abstract— Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are
extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator,
an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input
data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular
representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between
different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing.
The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users
bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative
experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.

Index Terms—Glyph-based visualization, machine learning, automatic visualization.

• L. Ying, T. Tang, Y. Luo, L. Shen, Y. Wu are with the State Key Lab of CAD &
CG, Zhejiang University, Hangzhou, China. E-mail: {yingluu, tangtan,
yzluo, fantast, ycwu}@zju.edu.cn. Yingcai Wu is the corresponding author.

• X. Xie is with Department of Sport Science, Zhejiang University, Hangzhou,
China. E-mail: xxie@zju.edu.cn.

• L. Yu is with Department of Computing, Xi’an Jiaotong-Liverpool
University, Suzhou, China. Email: Lingyun.Yu@xjtlu.edu.cn.

1 INTRODUCTION

Glyphs are widely used for multidimensional data visualization [20, 26,
55,67]. Circular glyphs, one common layout type, are round and encode
data using a polar coordinate system. Due to their artistic appearance
and effectiveness at encoding in angle and radian channels [19], circular

Manuscript received 21 Mar. 2021; revised 13 June 2021; accepted 8 Aug. 2021.
Date of publication 1 Oct. 2021; date of current version 22 Dec. 2021.
Digital Object Identifier no. 10.1109/TVCG.2021.3114877

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

401Ying ET AL.: GlyphCreator: Towards Example-Based Automatic Generation of Circular Glyphs

glyphs are one of the most commonly used visualizations, and make
up 69% of glyphs in one large corpus that combines images from
multiple visualization publications [13]. Visualization practitioners in
various domains, including E-learning [8], urban applications [14, 15,
32, 60] and social media [6] prefer to use circular glyphs. For instance,
TopicPanorama [57] uses circular glyphs to encode uncertainty, and
StreamExplorer [62] adopts them to represent streaming data.

However, because there is such a large design space, creating circular
glyphs from scratch is not easy [20]. For users with adequate visual-
ization experience, the creation of a circular glyph involves a two-step
approach: 1) design and 2) implementation. To ensure aesthetics and
intelligibility, the design step should include a complete process of eval-
uation, refinement, and standardization, which requires artistic skills
and creativity [17]. This task is quite challenging for junior visualiza-
tion researchers, and even experts need to iteratively refine the design
to achieve a satisfactory result. In the implementation step, users must
bind data attributes to visual channels. General-purpose graphic design
software (e.g., Adobe Illustrator) provides limited support for data bind-
ing. Designers usually need to customize glyph design instances for
different data samples, which is tedious and time-consuming. Although
computer programming can address the issue of reusability, a large
group of designers might encounter difficulty when programming com-
plex layout computations for the glyphs. To ensure design flexibility
and ease of implementation, researchers have proposed several tools
for creating data visualizations. However, some tools support regular
charts but not circular glyphs (e.g., Lyra2 [73]), while some require
users to perform complex operations, such as manually initializing all
visual elements (e.g., Charticular [46]). A systematic learning process
for the tools should also be considered.

With these challenges in mind, we attempt to address both aspects
of the problem. For the design step, previous research paradigms (e.g.,
Text-to-Viz [45]) have shown that using an existing circular glyph as
a reference to create another one [29] is an effective method. Making
comments on a glyph is easier for users than creating one from scratch.
Users can take the essence of the initial glyph and try to modify the
design and create a similar one, which can shorten the creation time
while maintaining quality. We improve the implementation step through
automated mapping of data and visual elements. Visual elements in the
reference circular glyph bitmap can be analyzed, and data can be bound
into these elements automatically to simplify the creation process. To
maximize convenience, we imagine whether the analysis and binding
processes can be connected without human effort. Similar to data
extraction, a model can help parse data from images. Overall, we
envision a deep learning model that can deconstruct an online circular
glyph example and use it to generate new circular glyphs. However,
two critical obstacles exist:

Lack of Dataset. We currently lack a circular glyph dataset large
enough to train a deep neural network. Although the percentage of
circular glyphs among all glyphs is large, the overall image number in
the VisImages dataset [13] is only 251, much smaller than the number
required to train a model.

Model Architecture. It is difficult to automatically analyze and
deconstruct a circular glyph bitmap. Previous research treated glyphs as
entire units, and little work has been conducted to analyze the individual
visual entities that make up a circular glyph. Moreover, due to current
machine learning models’ focus on natural images, no existing model
allows a machine to deconstruct a circular glyph into pixels.

To address these challenges, we need to explicate the compositional
elements of circular glyphs and consider the different ways in which
data and visual elements are mapped.

Due to the aforementioned lack of data, it is difficult to extract
correlations between visual elements and data. Therefore, we consider
the possibility of understanding a circular glyph by analyzing the layout
of visual elements. We propose a novel approach for automatically
generating a new circular glyph based on imitation by deconstructing
an existing circular glyph bitmap. We collect circular glyphs to explore
their general patterns and the overall design space. To address the
dataset shortage, we generate 11k circular glyph bitmaps based on our
design space and train a neural network to interpret the bitmap images
automatically. The model aims to detect all possible visual elements

in the bitmap image and draw out the embedded layout. Then we
implement GlyphCreator, which integrates the deconstruction model
into the authoring process for circular glyphs. The major contributions
of this study are as follows:
• We build a circular glyph dataset that incorporates all circular

glyphs collected from VisImages [13] and other possible combi-
nations covered by our design space. This dataset is available in
https://github.com/GlyphCreator/GlyphCreator.

• We propose a framework for circular glyph deconstruction.
• We develop GlyphCreator, a system for automatically creating cir-

cular glyphs, and demonstrate it through a usage scenario. We also
validate its usability through user interviews.

2 RELATED WORK

Here we summarize prior studies that have covered understanding visu-
alization with deep learning, glyph-based visualizations, and currently
available authoring tools.

2.1 Understanding visualizations through deep learning
Understanding visualizations is a common task, and an increasing
number of studies have applied machine learning methods to this task.
Researchers have pursued several directions including data extraction,
visualization redesign, and generating visualizations from data.

Researchers looking into data extraction have focused on different
visualization types. Kembhavi et al. [25] devised a method based on
long short-term memory architecture to parse the structure of diagrams.
Siegel et al. [53] parsed figures from extant research (mostly line charts)
by using a convolutional neural network (CNN)-based metric. Cliche
et al. [11] introduced Scatteract, a system that extracts data from scatter
plots through deep learning techniques and optical character recogni-
tion. Poco et al. [44] recovered visual encodings from chart images by
using an end-to-end pipeline. Other systems, such as ChartSense [24],
adopt a semi-automated approach, aiming to extract data from various
chart images by combining human interaction with CNN.

With regard to redesign, iVoLVER [39] requires users to perform
accurate chart interpretations through interactive annotation and builds
new visualizations with the data. Poco et al. [44] recovered color
mapping by providing an annotation interface and recolored a new
image. Sun et al. [54] trained a dual conditional generative adversarial
network (GAN) to colorize the contours of icons. Recently, Chen et
al. [9] used an end-to-end deep neural network (DNN) to extract a
timeline template from a bitmap image and generated new timeline
infographics. Ma et al. [36] located and identified charts within an
input image by using a learning-based model. Zhou et al. [71] used
a neural network-based method to reverse engineer bar charts. Savva
et al. [50] introduced a pioneer system called ReVision that identifies
a chart type by using the SVM model, extracts visual elements and
data, and automatically generates and outputs redesigned visualizations.
However, the mark extraction in ReVision can only handle regular
charts with a single mark type, such as bar charts, pie charts, and
scatterplots. ReVision might fail to produce circular glyphs, which
are usually composed of different types of visual elements and have
complex layouts, sometimes with overlapped elements.

In addition to redesigning visualizations by generating them from
images, redesign through data generation is also common. Wang et
al. [58] proposed DataShot, which automatically creates fact sheets
from tabular data. Shi et al. [52] introduced a visual story-generating
system that uses tabular data. They integrated the Monte Carlo tree
search algorithm into their system. Cui et al. [12] selected natural
language statements as inputs and automatically generated infographics
automatically. Qian et al. [45] utilized online blueprints to generate
infographics by imitating examples using input text.

All existing approaches focus on how to understand visualization
via deep learning methods. Our approach also belongs to this category.
However, we focus on glyphs, an underexplored visualization type.

2.2 Glyph-based visualization and authoring
Presenting multivariate data [63, 69] is not easy. Glyph-based visual-
ization is a common and effective format for presenting multivariate
data [3]. However, to design and create an effective glyph is not trivial.

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022402

Therefore, the question of how to design a good glyph is an impor-
tant problem for researchers. Ward [59] proposed a glyph generation
pipeline that includes mapping data with visual elements and layout
options. Borgo et al. [3] provided a state-of-the-art approach that fo-
cuses on glyph-based visualization and summarized design guidelines
and techniques. Fuchs et al. [20] extended the guidelines from a dif-
ferent perspective by reviewing experimental studies, and obtained a
deeper understanding of the glyph design space. Researchers have also
explored glyph design in specific fields. Ropinski et al. [48, 49] built a
glyph taxonomy and conducted a survey on medical visualization. In
the biological field, Maguire et al. [17] proposed a systematic approach
for glyph design and demonstrated the approach through biological
experiments.

Glyph-based visualization has been widely used in various fields,
such as geo-information [16], sports [30,56], and 3D visualization [10].
Moreover, several systems [7,26,33,37] use circular glyphs to represent
multidimensional data. Many authoring tools have been proposed to
help users create glyphs for their data. Ribarsky et al. [47] developed
Glyphmaker, a system that allows novice users to easily design a glyph.
Recently, Xia et al. [64] introduced DataInk, a system that supports the
creation of glyphs by adopting a pen-and-touch interactive input. Ren et
al. [46] focused on layout and presented Charticular, an authoring tool
that supports glyph generation. They divided the layout into chart- and
glyph- levels and focused on the layouts of glyph-based visualization.
However, we are also interested in the layout of glyphs, such as the
visual elements that make up glyphs. Users need to create with these
tools from scratch, which is a tedious task. We opt to imitate a bitmap
glyph image and accomplish the data mapping process automatically.

3 THE PIPELINE OF GLYPHCREATOR

In this section, we first give an overview of GlyphCreator. Then we
present the entire glyph creation process, including the construction of
a circular glyph dataset and the model for layout deconstruction.

3.1 Overview

Fig. 2. The pipeline of GlyphCreator. (a1) Image and (a2) data are input.
(b) The visual encodings are decoded and the layout is extracted by a
CNN model. (c) The circular glyph dataset is generated for training the
model. (d1) Users use GlyphCreator to combine the data and the layout
and obtain the glyph renderer (d2).

We aim to help users design and create circular glyphs through a
novel example-based approach. Our method identifies the structure
and components of circular glyphs, and then creates a circular glyph
according to the input example glyph and its structure and components.
To automatically extract the structure and components, we need to train
a detection model, which requires a dataset of circular glyph images.
However, due to the incomplete investigation of circular glyphs, how
to interpret the layout of circular glyphs remains unknown. With these
considerations, we propose a working pipeline: generating a circular
glyph dataset, training the machine, extracting the layout of the input
example, and creating circular glyphs based on the extracted layout.
• Circular Glyph Dataset. Our goal is to construct a dataset that con-

tains a diversity of circular glyphs. We initially select the VisImages
dataset [13] since it is regarded as one of the complete datasets of
visualization images. However, the number of circular glyphs in
this dataset is still much smaller than the data size required by the
training system. To solve this issue, we explore the design space
of existing circular glyphs by analyzing the relationships between
different visual elements. We list all possible variables that combine
to compose a circular glyph, and randomly generate 10k images with
annotations based on this design space to form the final dataset.

• Layout Deconstruction. We decide to deconstruct a circular glyph
layout automatically via a two-step method (Fig. 2(b)). First, partial
information is detected as visual elements. Second, the whole layout
is obtained by mapping the detection results within the circular glyph
design space. Based on the aforementioned VisImages dataset, we
train a deep learning model to detect all the visual elements in a
bitmap and to obtain the bitmap’s center point. With the output
label, corresponding bounding box, and center point, we calculate
the distance between the center point and each element and ultimately
acquire a layout by mapping the design space’s detection results.

• GlyphCreator. We propose GlyphCreator, an example-based auto-
matic system for circular glyph generation (Fig. 2(d1)). Users input
an example circular glyph image that they like, as well as their data.
Our system deconstructs the input glyph into components and binds
the user’s data with these components. As the output, the system
generates a list of circular glyph candidates. After selecting a satis-
factory glyph, users can export the result in code form (Fig. 2(d2))
and use it in their system with minimal effort.

3.2 Circular Glyph Dataset
We obtained a circular glyph dataset by collecting existing images
in this category, exploring their design space, and generating various
circular glyphs with annotations to form the final dataset.

3.2.1 Circular glyphs in VisImages dataset

To collect circular glyphs, we started with existing image datasets
in visualization. Several datasets, such as MassVis [4], Beagle [2],
and VisImages [13], collect numerous visualization images and classify
them by design type. We selected the VisImages dataset [13] as our data
source because it collects images from top visualization conferences
and journals, such as IEEE VAST and InfoVis. Moreover, it specifically
contains a “glyph” category, with 251 images. We filtered the circular
glyphs according to two criteria:
• C1 images that have at least one visual element with radial contour

whether intact or not;
• C2 images that have at least two kinds of visual elements.
Based on these criteria, three co-authors of this paper reviewed all
251 images and identified circular glyphs individually. The co-authors
reached a consensus on 201 (80%) of the images and ended up with
162 circular glyphs. Within the remaining 50 images, some glyphs
were difficult to recognize because they were small or blended into
the background. After a thorough discussion of these images, the co-
authors identified 16 circular glyphs. Finally, a total of 178 images
were selected as circular glyphs that met the aforementioned criteria.

3.2.2 Analysis of circular glyphs

To explore the design space for state-of-the-art circular glyphs, we
started with the template identified by Maguire et al. [17], which divides

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

403Ying ET AL.: GlyphCreator: Towards Example-Based Automatic Generation of Circular Glyphs

a glyph into three regions; namely, mainbody, exterior, and interior. Al-
though this template focuses on a particular design, this breakdown can
be extended to the circular glyph layout in general. Four visualization
researchers (co-authors of this work) with rich experience in designing
and using glyphs participated in this entire process. Because having
too many pictures or iterative rounds might keep them from reaching a
conclusive design space, we selected a subset of 20 glyphs and checked
whether it could work as well as the full set of 178 glyphs. Based on
the selected images, we refined the design space over several iterative
rounds, each consisting of three steps: deconstruction and classification,
discussion, and refinement.
• Deconstruction and classification. We analyzed all selected images

based on the template proposed by Maguire [17] and the current
design space, which includes deconstructing the circular glyph into
visual elements and classifying all visual elements as belonging to
one of these types.

• Discussion. Through the results of the previous stage, we identified
difficulties with the current design space. The segmentation degree of
visual elements was unified, such as individual sectors in pie charts.
If visual elements could not be classified within the current design
space, we extended the space.

• Refinement. To solve the difficulties of each step, we refined the
definition of visual elements and improved the design space. All par-
ticipants reached a consensus about all visual elements, and identified
a design space that can be applied to all 20 circular glyph images.
We divided all visual elements into four categories; namely, chart,

shape, label, and icon. Chart uses graphic figures for data visualization,
such as pie charts or line charts [23]. When acting as a visual element
in a glyph, it is not necessary for a chart to show all the components
it normally would, such as axes or a legend. Shape refers to a basic
geometric object, such as a line, a circle, or a polygon. Icon refers
to a small pictogram or ideogram. Label refers to a text label. After
examining all circular glyphs in the dataset, we further discovered
diverse patterns in the dominant chart category and categorized them
into two sub-categories: circular and variant charts. Circular charts,
like donut charts and pie charts, use a polar coordinate system. Others,
such as heatmaps and boxplots, need to be transformed in order to
achieve a circular shape and be placed in a polar coordinate system.

R

�

Fig. 3. A polar
coordinate sys-
tem

Without knowing the data underlying the image,
we distinguished the visual elements based on their
relative positions. If C1 is satisfied, the entire cir-
cular glyph can be placed within a polar coordinate
system. Therefore, we focused on parameters R and
θ to locate each visual element. If several visual
elements have the same sub-category and their R
values are almost the same, they can be regarded as
the same layer. For instance, in Fig. 1(d1), the three
peripheral circles are regarded as one layer. Then,
we divided a circular glyph into several layers. After
examining all the collected circular glyph images,
we classified all layers into three regions: interior, intermediate, and
exterior. As a result, we have obtained a design space that covers the
full collected circular glyph dataset, as shown in Fig. 4.
• Interior. The interior represents the closest layer of the circular

glyph, which is indispensable. The visual element of the interior layer
has three parts: chart, icon, and shape. Designers prefer pie charts
(11/17) and donut charts (3/17) in the circle chart category. For the
shape category, they use the circles (76/95) most. In Fig. 1(d1), the
interior layer is denoted by the red polygon. In Fig. 1(a1)(b1)(c1)(h1),
the center circle represents the interior, and in Fig. 1(g1), the layer
denoted by the donut chart is the interior layer.

• Exterior. The exterior represents the outside layer of one circular
glyph. The exterior layer can be classified into three categories:
shape, chart, and icon. In the shape type, circles (90/120) are mostly
used, whereas variant charts (12/21), such as boxplots and bar charts,
are often used in the chart type. For example, in Fig. 1(d1), the three
circles are included in the exterior as the same layer. The modified
dashboard in Fig. 1(b1), the circle in Fig. 1(g1) and the variant bar
chart in Fig. 1(a1) also denote exterior layers.

• Intermediate. The intermediate represents layers between the inte-

rior and exterior. The number of layers is greater than or equal
to zero. An intermediate layer includes two categories of vi-
sual elements: chart and shape. No intermediate layer exists in
Fig. 1(a1)(c1)(e1)(f1)(h1). The circular glyph in Fig. 1(b1) has three
intermediate layers: an arc, a variant heatmap, and a circle set.

3.2.3 Generating training dataset

DNN requires a large amount of high-quality training data to ensure
the accuracy and effectiveness of the detection model. We need a large
and diverse collection of circular glyphs. To build our training dataset,
we used D3 [5] to generate circular glyphs in two ways: by finding all
possible layouts of circular glyphs within the design space, and then
iterating various styles of a particular layout.
• Layout. We analyzed existing circular glyphs found within our

design space. We found that the most common number of layers are
two, three, and four, corresponding to zero, one, or two intermediate
layers, one interior layer, and one exterior layer. To obtain all possible
circular glyph layouts, we enumerated all visual representations for
each layer. Therefore, the number of combinations was: C1

ni
× (C0

nm
+

C1
nm

+C2
nm
)×C1

ne
, where ni,nm, and ne are the numbers of visual

representations of the interior, intermediate, and exterior layers. We
manually checked the reasonableness of each combination.

• Style. We examined the size, position, and color of all visual ele-
ments that make up a circular glyph. For each element, we deter-
mined the number of parameters, as shown in Fig. 4(b). We changed
red, green, and blue channels based on RGB color space to ensure
color randomness. Based on a polar coordinate system (Fig. 3), we
used R to indicate the radial coordinate and θ to indicate the angular
coordinate. We combined two parameters and located the visual
element’s position. Notably, the elements in the interior layer have
fixed positions. The same applies to all circle charts in other layers.
For several variant charts (e.g., bar chart) and shapes (e.g., arc), two
parameters are needed to indicate the angle: the starting angle and the
angle range. When the visual element has only one parameter in the

Fig. 4. (a) The design space of circular glyphs. A circular glyph can be
divided into three regions: interior, intermediate and exterior. The second
column indicates the contained categories of visual elements for each
region. We used four different colors to represent four different categories.
(b) The number of parameters for each visual element is shown in three
dimensions: color, position and size. One number indicates a fixed
number of parameters. “a | b” means “a” or “b”.

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022404

size dimension, like pie charts or circles in the interior layer, then only
R is required. For elements that have two size parameters (e.g., donut
charts), R1 and R2 are essential. For bar charts, ΔR = (R1−R2) is
regarded as the parameter, and for arc, ΔR indicates the thickness.
We randomly generated data and assigned them as the parameters of

corresponding visual elements (Fig. 4(b)) for data encoding based on
all styles. We used this process to create 10k circular glyphs.

Annotation. All detection tasks require an annotated dataset. We
used the same metrics as in the Microsoft Common Objects in COntext
(MS COCO) dataset [31], which is cost-efficient and of high quality, to
unify the format of annotations. At the labeling stage, we outlined the
bounding box of each visual element. When drawn by D3 [5], labeling
all visual elements through direct calculation was not time-consuming.
Finally, each circular glyph was converted from SVG to PNG format
and annotated with its representation and layout.

3.3 Layout Deconstruction
Due to the absence of fixed rules governing the styles and layouts of
circular glyphs, parsing one to extract layout information is difficult .
We achieve this goal by following two steps: first, obtaining the partial
visual element information, second, elucidating the overall layout. The
first step involves the detection of visual elements in a circular glyph.
The second means obtaining the entire layout by locating the polar
coordinate system and mapping the elements with the design space.

3.3.1 Detecting Visual Elements
Object detection is a popular and well-developed task within the com-
puter vision domain. It is similar to ours: identify objects in an image
with their associated category and outline the profile. However, object
detection focus on natural images, whereas we are interested in circu-
lar glyph visualization specifically. The detection task is simpler for
abstract images compared to natural ones due to clear boundaries. We
defined 12 types of target visual elements (Fig. 4) that may be present
in a circular glyph. The 12 categories include: donut charts, rose charts,
radar charts, pie charts, sunburst charts, gauge charts in the circle chart
category (6); icon (1); polygons, circles and arcs in the shape category
(3); boxplots and heatmaps in the variant chart category (2). Our main
goal is to deconstruct the layouts of circular glyphs by detecting all
visual elements – in other words, what appears and where.

A possible solution is to train an existing object detection model
using our dataset. State-of-the-art detectors can be broadly divided into
one-stage detectors, which have high speed, and two-stage detectors,
which have high accuracy. As a one-stage anchor-free detector without
post-processing, CenterNet [72] can identify each object with a category
and outline its bounding box in real time. It outperforms a range of
state-of-the-art algorithms with a speed-accuracy tradeoff. However,
for the second task of locating the polar coordinate system, the network
needs modification for center localization. Moreover, CenterNet [72]
cannot handle two objects with the same center because they will be
regarded as the same object.

Inspired by Zhou et al. [72], we built a detection model by regarding
visual elements as points. With the model, we could detect all visual
elements accurately in real time and simultaneously locate the origin
of the polar coordinate system.

Training Dataset. Given the dataset generated in Sec. 3.2.3, we
provided extra information about the origin of the polar coordinate
system. To guarantee the accuracy and efficiency of the detection
model, we preserved the annotation metrics used in the MS COCO
dataset [31]. Specifically, for each circular glyph image in the dataset,
instead of giving the x,y value of the center point, we added a bounding
box in the annotations whose center is the same as the origin and labeled
it as Center. To avoid center point collision – two objects with the same
center – two conditions regarding the size of the center bounding box
in one circular glyph image must be met.
• If the image has one visual element whose center point is the same

as the origin (e.g., the center circle in Fig. 1(a1)), the corresponding
element is annotated with another label Center.

• If all visual elements’ centers do not collide with the origin (e.g., the
circular glyph in Fig. 1(d1)), we define a new, small bounding box
containing the center and annotate it with the label Center.

Fig. 5. Model architecture to detect visual elements and the center point.
The backbone network extracts the feature map from the input image.
Four neural networks then predict the bounding box and center location
separately.

Model Architecture. Given an RGB circular glyph bitmap Ic ∈
RW×H×3, where R refers to the bitmap, W,H refers to the width and
height, 3 refers to three color channels, the model aims to predict
the center position of glyph (xc,yc) and bounding boxes {Bvs} of all
visual elements. We used a fully-convolutional network to obtain the
feature map F from the input image I. The output prediction was
downsampled by an output stride r. We selected the stacked hourglass
network, up-convolutional residual networks (ResNet [22, 66]), and
deep layer aggregation (DLA [70]) as candidates. After the experiment
in Sec. 5.3, we employed the hourglass network as the backbone.

CenterNet [72], a network for object detection, approaches this goal
through center localization and size regression by modeling an object
as a single point. With feature map F extracted by the backbone,
CenterNet produces a heatmap for each category using a Gaussian
kernel for localization. For regression, CenterNet predicts the height
and width of the object and the offset to recover the error due to output
stride r. Our task includes object detection and center detection. We
used a similar strategy for object detection for all categories in Fig. 4(a)
and considered the label Center for center detection. Focused on the
position of the center, we aim to obtain the heatmap of Center. The
size prediction and the offset are not necessary. Therefore, for each
object K with category ck, the objective loss is

Lk =

{
Lh, ck =Center
Lh +λsizeLsize +λo f f Lo f f , otherwise (1)

where Lh is the loss of the heatmap, Lsize is the loss at the center point,
and Lo f f is the offset loss. These definitions are similar to those in Cen-
terNet [72], and we refer readers to the description of CenterNet [72]
for additional details. We scaled the loss by two constants λsize and
λo f f , and set λsize = 0.1 and λsize = 1 in all our experiments. Total loss
L is composed of individual loss Lk for each object.

We used a single network to predict heatmap Y , offset O, and size S.
Sharing a common fully-convolutional backbone network, all outputs
are obtained, and then made to pass through a separate 3×3 convolution
ReLU and another 1×1 convolution. An overview of the network input
and output is shown in Fig. 5.

3.3.2 Mapping Elements with Layout

After understanding the content using the network, the next step was
to map the detection elements with the design space. Given the origin
of the polar coordinate system, we calculated the distance of different
visual elements and compared their values for mapping.

We define the distance of each visual element using two conditions.
For the first condition, as shown in Fig. 6(a), neither the x range nor
y range of the bounding box goes through the corresponding value of
the origin. The distance of this visual element is close to the linear
distance of origin and the center point of the bounding box. Given the
bounding box and element type, predicting the region’s actual shape is
difficult. Therefore, we opted to use the bounding box for calculation.
If one value, whether x or y, is in the bounding box’s range, as shown

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

405Ying ET AL.: GlyphCreator: Towards Example-Based Automatic Generation of Circular Glyphs

Fig. 6. Process of mapping each visual element with the layout. The
first step is to calculate the distance for each visual element based on
all bounding boxes and a center point. (a) The bounding box without
the center point and (b) the bounding box containing the center point
correspond to the two conditions in Equation. 2. (c) The elements are
combined. (d) The final layout is obtained.

in Fig. 6(b), then the distance is represented with the true value R. The
concrete definition is:

Dv =

⎧⎪⎪⎨
⎪⎪⎩

max
i=1,2

(|xBi − xO|, |yBi − yO|), xO ∈ [xB1 ,xB2],

yO ∈ [yB1 ,yB2]

d(Bcenter,O), otherwise

(2)

where O is the origin of the polar coordinate system; B1,B2 is marked
in Fig. 6(a)(b); Bcenter is the center point of the bounding box; xp,yp
represent the x,y value of the corresponding point p, which can be
O,B1,B2; and d(p) is the linear distance of the origin and the point.

When the distance between two same-type visual elements was too
small, we merged them into the same layer. We discovered that they
share the same encoding mode due to falling within the same category
and close position for elements of this category. Therefore, they should
be bound with the same data attribute. After a thorough investigation
of existing circular glyphs, we found that 5% of the radius of a circular
glyph (the distance of the most distant visual element) performed well
in all situations. Then, we define the distance of each layer as:

Distl = arg
v

d (v) v ∈ l (3)

Based on the definition above, we combined visual elements with
distances within a small gap into the same layer. We also marked the
number of elements for further generation (e.g., the circle 3 in the
exterior layer in Fig. 1(d1)).

Finally, we obtained all layers, together with their category and dis-
tance. We sorted all distances by value and assigned the smallest to the
interior, the largest to the exterior, and the middle to the intermediate.

4 THE GLYPHCREATOR SYSTEM

This section presents GlyphCreator, an automatic example-based sys-
tem that facilitates the easy generation of circular glyphs. Users can use
GlyphCreator to produce a satisfactory circular glyph nearly effortlessly,
simply by uploading relevant data and a reference image designed by
experts. The reference image ensures quality, while the tool reduces
the high effort usually necessary to produce circular glyphs.

4.1 Design Considerations
We iteratively improved our design considerations through a careful
review of relevant literature and discussion with two researchers. The
three primary design considerations of GlyphCreator are as follows:

DC1. Support an easy-to-learn [40] and easy-to-use generating
workflow. The current workflow for generating circular glyphs is time-
consuming, which inspired us to simplify the process. GlyphCreator

Fig. 7. GlyphCreator: (a) Data and (b) image can be upload. (c) Users
can manipulate each visual element in individual editing panels. (d)
Options for different encodings are shown to users. (e) Users can preview
the generated circular glyph design and (f) export it.

targets all users of data visualizations, including those who excel in
design and those without extensive design experience. The learning
cost of a complex tool is high for general users [21]. Moreover, users
are not willing to spend a long time editing after they find a satisfactory
reference image. It is necessary to create a tool with a low learning
cost [40] and easy-to-use interactions. Therefore, we designed our
glyph-generating tool with a straightforward workflow and a simple
editing interface.

DC2. Generate custom and appropriate glyphs quickly and eas-
ily. Different users have different style preferences. Although it is
relatively easy for inexperienced users to create a glyph based on an
existing design, the final result will lack creativity. Therefore, we aim
to support end users in creating their own uniquely styled glyphs easily
and intuitively. This requires balancing two considerations: On the
one hand, users should be supported in learning layouts from existing
circular glyphs. On the other hand, they should have the freedom to
design their own circular glyphs in accordance with their preferences.

DC3. Support a reusable [40] and editable circular glyph out-
put. In many visualization applications, multiple circular glyphs are
combined to make up a larger glyph-based visualization. Thus, a tool
that makes it easy to reuse [40] and edit a circular glyph is attractive.
For editability, users of GlyphCreator can modify data and produce
a new glyph version. For reusability, users can easily use the output
circular glyph in their visualization system to see the real-time effect
of any edits, thus saving time that might have been spent on multiple
design iterations.

4.2 System Workflow
To support automatic example-based generation of a circular glyph, our
system needs two inputs: data and an example circular glyph image.
By allowing users to upload an example image, we have transformed a
labor-intensive and time-consuming workflow into an automatic and
time-saving one, in which our system easily understands the reference
image and binds data with the visual elements.

Following DC1, users first upload the multivariate data and circular
glyph bitmap to the system. Next, our deconstruction model extracts
the layout and creates an initial circular glyph for the input data. The
layout of a circular glyph rather than the specific style (such as the color
of a visual element) is extracted following DC2.

We used a heuristic approach to pre-process the input data. For each
data attribute, we first determine the number of parameters required
for visual elements. Specifically, singular value (e.g., average value),
paired values (e.g., min-max range), and other values require 1, 2,
and n parameters, respectively. Second, we match the data attributes
to visual elements according to the number of parameters (Fig. 4(b)).
A successful match is shown in Fig. 8. For example, “the risk of
developing cancer” with one parameter was matched to the color of the

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022406

circle, which also has one parameter. By default, we recommend the
circular glyph whose encoding is commonly used by experts. Users can
then skim through all the images generated by our system and choose
one for further editing.

4.3 System Interface
Following DC1, we placed one function into one view. As shown in
Fig. 7, our system has four views, namely, Upload, Preview, Edit, and
Options. In the Upload view, a user can upload data (in JSON format)
and an image. Next, multivariate data are shown in detail as name
and value attributes in the UploadData panel, and the bitmap image
is presented in a small preview window. Then, the user can click the
generate button to go to the next step. Many generated circular glyphs
are shown in the Preview view and Options view. The image in the
preview windows is the one with the most common encoding from the
Options view. In the Options view (Fig. 7(d)), only the center column
(the tick column) corresponds to the valid input data. The left and right
columns (with up and down arrows) highlight the encoding attribute
for each visual element by making the value smaller or larger. We also
present the encoding information in a text format to help users ensure
the correct encoding. When hovering over the glyphs in the Options
view, the encoding information can be seen as shown in Fig. 7(d). By
dragging data (using the corresponding arrows in Fig. 7(a)) to the visual
elements in the Preview view (Fig. 7(e))), users can bind their data with
the glyph. After dragging, some unmatched encoding in the Options
view disappears. The user can choose one circular glyph in the Options
view by selecting the suitable attribute that encodes the data. After
selecting one circular glyph from the alternatives, the Preview view is
replaced by the new circular glyph and corresponding details, including
the layout and encoding information near the upper right-hand corner
(Fig. 7(e)). We developed one panel for each visual element in the
Edit view (Fig. 7(c)) to support small changes, such as those in color
and size. Notably, we encoded the attribute with unavailable data to
ensure the correctness of data expression. For charts that use multiple
colors, such as pie charts, we provided users with several popular color
schemes for an improved result. For the other numerical attributes,
users can drag the button on the slider to change the value. Then, the
well-designed circular glyph can be exported in JavaScript, following
DC3. With the exported file, the user can easily create new circular
glyphs with new data by calling on the DrawGlyph function.

4.4 Implementation
We employ a client-server architecture to develop GlyphCreator, which
comprises a backend that runs the deconstructing model to understand
a circular glyph bitmap and a web interface that allows users to choose
and edit glyphs. The web interface is implemented using JavaSrcipt
and Vue framework, which supports uploading data and images and
the editing of circular glyphs. The server side is built in python and
PyTorch [43], the popular machine learning library. We also use a
well-established graphic library, namely D3 [50], to render all visual
elements in circular glyphs.

5 EVALUATION

This section presents two usage scenarios, user interviews, and a quan-
titative experiment to demonstrate the effectiveness of GlyphCreator.

5.1 Usage Scenarios
This section presents two usage scenarios using different datasets. The
first scenario demonstrates the entire process of creating tailored glyphs
with GlyphCreator as performed by a junior visualization researcher,
Lucy. Lucy’s job is to implement a system for analyzing the worldwide
distribution of cancer. The dataset [42] that she is using comprises
the incidence (new cases), mortality (deaths), prevalence, and region
of each type of cancer in 2020. To see how GlyphCreator helps Lucy
design and use circular glyphs, we lay out her workflow step by step.

Because Lucy was unfamiliar with glyph visualization, she looked
for inspiration on the Internet. Cao et al. [6] proposed an interesting
glyph to visualize the overall behaviors of an online learner (Fig. 2(a1)).
The size of the inner circle of this glyph encodes an important piece
of data about the learner, while the bar chart wrapped in the glyph

encodes more detailed information. Lucy’s data can easily be encoded
by such a glyph design. Each of the world’s regions can be represented
by a glyph. The bar chart can be used to show the percentages of new
cases represented by different cancers (e.g., breast cancer accounts for
16.8% of all cancers in Africa). Lucy chose to include the top five most
prevalent cancers in the world. The ratio of new cancer cases to overall
population is the most important attribute, and is thus encoded by the
circle size. Moreover, Lucy decided to use colors to encode the risk of
developing cancer before the age of 75. In this manner, regions with a
large ratio and a high risk are highlighted.

Lucy prepared the data and wrote a JSON file containing all data
dimensions for a particular region, Africa. After uploading the data,
our system showed the information in bind (initially an empty box),
name, and value (Fig. 7). Next, Lucy saved one individual glyph image
from the Cao et al. paper, then uploaded it to the GlyphCreator system.

Fig. 8. A mapping example between visual elements and input data.
The numbers in dark green boxes show the parameter number for each
attribute or each data dimension. The arrow indicates the mapping.

After Lucy clicked the “generate” button, she immediately noticed
the circular glyph in the Preview view in the center of the webpage,
the two bottom editing panels (CirclePanel and BarchartPanel), and
the various images in the corresponding Options view. To create her
desired encoding, she dragged the arrow of the ”new case ratio” row
to the bar chart in the center. Then, she noticed the options shown in
three columns (Fig. 7(d)). She compared the left and right images of
each row to see what the glyph would look like if the value of the data
increased or decreased. Moreover, when she hovered over the circular
glyph image in the Options view, text appeared describing how the data
were encoded. For example, total risk - circle - color indicates that the
total risk data will be bound with the color of the inner circle.

Given the previous considerations, Lucy decided to check the Op-
tions view to find a glyph version that she likes. She chose the en-
coding total risk - circle - color, new case ratio - bar chart - size,
new case/population - circle - size. The mappings are shown in Fig. 8.

The size and the color of the circle encode the data labeled
“new case/population” and “total risk,” respectively. The size of the bar
chart represents the proportion of new cases of different types of cancer
to the overall number of new cancer cases in Africa.

After seeing the default glyph in the Preview view, Lucy decided
to make several changes. Satisfied with the inner circle, she chose
to adjust the bar chart. Excluding the size encoded with data, she
changed the bar chart’s starting angle by dragging the small button in
the corresponding slider (Fig. 7(e)).

Ultimately, she exported the circular glyph in code form, which can
be easily read by her system. With the export file in JavaScript format,
Lucy called on the function DrawGlyph in her system by providing
the specified variables: the center point of the expected circular glyph
location, the glyph size, and, most crucially, the data in a JSON format.
Moreover, by iterating the functions using the data of different regions,
such as Asia and Europe, Lucy drew six circular glyphs corresponding
to six continents in one map with ease. The result is shown in Fig. 9.
Now familiar with the system workflow, Lucy went on to design other
versions by making different choices about the inner circle.

To demonstrate how a more comprehensive glyph can be designed
by GlyphCreator, we present another usage scenario. Andrew is a
business intelligence analyst with basic data visualization knowledge.
He wanted to analyze car sales over the past 12 years using Skoda’s UK
Used Car Dataset [1]. He followed Lucy’s approach to create a more
complex tailored glyph using GlyphCreator, which he subsequently
adapted into a glyph-based visualization (Fig. 9(b)). In the visualization,

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

407Ying ET AL.: GlyphCreator: Towards Example-Based Automatic Generation of Circular Glyphs

Fig. 9. Two visualizations based on the tailored glyphs created by
GlyphCreator using the worldwide cancer dataset (a) and the UK Used
Car Dataset of Skoda (b).

each glyph represents information about used cars sold over the past 12
years. The visual elements of the circular glyphs encode multivariate
information about the cars. For instance, the inner donut chart shows
three different types of cars (pink: semi-automatic cars, purple: manual
cars and yellow: automatic cars). The width of the inner donut chart
(Router −Rinner) shows the number of sold cars (a thicker band indicates
that more cars were sold). The arc in the intermediate layer illustrates
the price range, and the circle within the arc presents the average price.
Glyphs are placed in a Cartesian coordinate system, where the x-axis
represents the year and the y-axis represents the mileage.

Andrew discovered some interesting patterns with this visualization.
In general, glyphs at lower positions (oval shadow in Fig. 9(b)) had a
larger donut width, indicating that cars with lower mileage (between
5,000 and 40,000) sold slightly better than those with higher mileage.
In the two most recent years (2018 and 2019), no car was sold with a
mileage higher than 60,000 (Fig. 9(b1)). However, the lowest-mileage
cars in a given year do not generally have the highest sales numbers
(Fig. 9(b2)), likely because many of them are new cars and thus unlikely
to be resold. An interesting finding is that sales of low-mileage cars
increased drastically in 2019. This may be related to the fact that Skoda
recalled thousands of cars in the UK that year [41]. As a result, people
might have lost confidence in the brand and sold their new cars, even
though the models they owned were not recalled. Andrew also noticed
that the glyph at the bottom right (Fig. 9(b3)) has an outer arc that
is significantly longer than those of the other glyphs, but the bullet
position is similar to the neighboring glyphs. By exploring the data, he
found that one car of a common model was sold at an extremely high
price for an unknown reason.

5.2 User Interview
To evaluate the effectiveness and usability of GlyphCreator, we con-
ducted semi-structured interviews with four end users who were famil-
iar with data visualization. The first user (U1) was a senior researcher
who graduated from a professional design school. He also studied

visualization and visual analysis for four years. The second user (U2)
worked as a senior visualization researcher for three years. However,
he did not have systematic design training. The third user (U3) was a
student majoring in computer science and had little prior experience
in visualization, all of which was obtained from an Information Visual-
ization course (eight weeks, four lectures per week). These three users
(U1, U2, U3) evaluated the workflow of GlyphCreator and discussed its
potential applications. The fourth user (U4) was a professional UI/UX
designer who worked for a visualization group. Based on her visualiza-
tion knowledge and design experience, she evaluated the output circular
glyphs generated by GlyphCreator. She also compared the system with
various commercial design tools (e.g., Adobe AI/PS).

Each 60-minute interview began with a five-minute introduction
to the system workflow. Afterward, we demonstrated GlyphCreator
by going through a three-minute example case. We let users become
thoroughly familiar with our system through free exploration. They
were then asked to generate two circular glyphs using a given reference
image and data. Afterwards, a semi-structured interview was conducted
to obtain opinions on the usability and quality of our system. In the
interview, the users were asked to demonstrate how to use the system to
create circular glyphs. We asked about their previous experience with
glyph creation. We also asked them to freely share their thoughts and
suggestions about the glyphs and the system as a whole, and to point
out any causes of confusion.

Overall, the users were impressed with our system’s convenience and
intelligence. For example, U3 said, “The process of editing a circular
glyph by GlyphCreator is easy and straightforward.” U2 said, “ It does
a great job of shortening the time for creating a glyph.” U4 focused on
system design, including the workflow, design of interactions, and user
interface. She commented that ”the interface is easy to follow and the
interactions are intuitive.”

The users liked the entire workflow design. Regarding the glyph
generation process, U1 and U2 began from the data, whereas U3 started
with the reference images. All three users (U1, U2, and U3) said they
read papers to find glyph designs that could meet their needs. U1,
who has solid design skills, regularly collects good glyph designs in
case they come in handy. The three users are used to designing and
implementing glyphs through programming. Based on their previous
design experience, they expressed the need for a system for generating
circular glyphs because it could reduce the iteration time. Due to an
indispensable reference image, they agreed with our input, including
data and image. U4 focused on the workflow of GlyphCreator. Com-
paring GlyphCreator with professional design tools, she commented,
“GlyphCreator is more intelligent and efficient. I only needed several
minutes to learn how to use the system.” She also pointed out several
possible improvements to the interface, such as adding hints on three
columns in the Options view. We further improved our interface by
providing it with a user-friendly, built-in user guide.

All users thought the system was easy to understand. We asked users
to score the system on the generated circular glyphs’ quality based on a
5-point Likert Scale, where 5 is the best and 1 is the worst. U1 gave
a 5, and U2, U3, U4 gave a 4, which shows their high appraisal of the
glyph aesthetic and its similarity to the original reference image. All
users thought that the generated glyphs properly adopted the layouts
of the original images. U1 commented, “The glyphs look similar to
the original ones, and I can freely edit other attributes.” U4, a designer,
said, “From the perspective of data encoding, I think the generated
picture is reasonable. Calculating the size of each component when
using a professional design tool is tedious.”

We also received suggestions for further improvements. First, the
users suggested we consider the data range to avoid blocking each
visual element. For example, when using a circle as an interior layer
and a boxplot as an exterior layer (Fig. 1(h1)), the circle’s radius should
not be larger than the boxplot’s, even if users encode data on this
attribute. To ensure correctness, we used a relative size for the inner
element to replace the previous size. Moreover, the users suggested
uploading two referred images or more to compare other possibilities.

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022408

5.3 Model Experiments
Our model was implemented using PyTorch [43] with four types of
CNN backbone, namely, ResNet-18 [22], ResNet-101 [66], DLA-
34 [70] and Hourglass-104 [27]. We used the Hourglass-104 network
as the standard and modified both the ResNets and DLA-34 by using
deformable convolution layers. To evaluate the performance of parsing
a circular glyph, we adopted the average precision (AP) [18] value
from the precision/recall curve to access two tasks, namely, what and
where. Each detection was considered true or false based on the area
that overlapped with the ground truth bounding boxes. Overlap area
was calculated by the formula: IoU =

area(Bp∩Bgt)
area(Bp∪Bgt)

, where Bp is the
predicted bounding box and Bgt is the ground truth bounding box. If
IoU exceeded a threshold, then we considered the detection as a true
one. Without test augmentation, we evaluated our object detection
performance on our circular glyph dataset, which contained 8k training
images and 2k validation images. We reported the average precision
over all IoU thresholds (AP) and AP at thresholds of 0.5 (AP50) and
0.75 (AP75). Table 1 shows results with different backbones. According
to the definition, a high AP value denotes a good detection model.

Table 1. Average precision of detecting visual elements using different
backbones in the circular glyph dataset.

Backbone AP AP50 AP75 Time(ms)

Hourglass-104 82.6 98.4 94.1 92
DLA-34 82.2 98.2 93.2 45

ResNet-101 80.8 98.1 92.7 36
ResNet-18 79.0 97.6 91.4 20

Table 1 shows the results with different backbones. The running time
was tested on a local machine, with Intel(R) Xeon(R) Platinum 8260
CPU, Tesla V100 GPU, PyTorch 1.5.0, and CUDA 10.2. Considering
that all backbones take less than 0.1 seconds to deal with one image,
we selected the best one. Among all backbones, Hourglass-104 had the
highest accuracy with a relatively good speed. Therefore, we chose the
Hourglass-104 backbone for model training.

6 DISCUSSION

This section discusses the implications and limitations of GlyphCreator.

6.1 Implications
Loop of Visualization and Artificial Intelligence (AI). Recently, us-
ing AI to aid in data visualization has become more common [61]. We
use AI to simplify the visualization task, and use visualization to help
in the machine learning task, creating a loop of visualization and AI.
To deconstruct a circular glyph for the former arrow automatically, we
trained a detection model that satisfied our scenario. The lack of a train-
ing dataset led us to draw the second arrow. We used D3.js [5] to draw
circular glyphs, and saved the PNGs and annotations as the training
dataset. Moreover, we utilized simple calculation as a substitute for the
labor-intensive annotation process. For an improved authoring tool ben-
efiting the community, we need a better model with high accuracy that
is fast enough for quick editing. For a perfect model, a comprehensive
understanding of the design space of circular glyphs for data visualiza-
tion must be obtained. Through multiple iterative rounds, we achieved
a well-behaved model and a tool, GlyphCreator, with high efficiency.
GlyphCreator is also inspiring, providing a successful work example
rooted in two fields of knowledge and thus inspiring the development
of future visualization tools.

Example-based Circular Glyph Generation. As combinations of
data-driven visual entities, glyphs use different visual channels to en-
code multiple informational dimensions. Although glyphs are effective,
their complex layouts and multiple encodings can make the design and
realization process difficult. Therefore, automating the generation of
glyphs is a meaningful task. Compared with creating from scratch,
example-based generation is more efficient. In real scenarios, users
with different design skills in the visualization field can use GlyphCre-
ator. Users with design expertise usually have a clear goal for their

glyph, and want to see the final result as fast as they can for iteration.
Unlike when this process required tedious drawing and binding, they
can see the image only after a few minutes of operation. Moreover, they
can use the glyph in their system, previewing it quickly with our tool.
Users with little design experience have a clear understanding of glyphs
but find the design process difficult. They want to use an existing glyph
as a reference for their own data. With our tool, they can obtain their
desired glyph even when they have little understanding of the original
image. These scenarios lead us to believe that our example-based glyph
generation method provides improved efficiency to users who need
to design glyphs, even without a complete understanding of the form.
Such a useful and effective means of representing multivariate data
visualization could have a wide range of applications.

Application of the Dataset. Our dataset of circular glyphs can be
used for other tasks, such as predicting visualization types and searching
for a glyph image using keywords. For each glyph, we labeled each
visual element with its category. A new model for chart prediction can
be feasibly trained for all visual elements in circular glyphs. Moreover,
people can use the labels in annotations to search for a desired circular
glyph by inputting several keywords about the corresponding visual
elements. During the design process, people aim to find a glyph with
a particular visual element that is suitable for one data type, like a
pie chart for proportional data. However, obtaining content results by
inputting related keywords is difficult with popular search engines, such
as Google. With our dataset that contains numerous images, users can
acquire related images for inspiration or other possible usages.

6.2 Limitations
Our approach has several limitations. First, GlyphCreator has limited
support for glyph style customization. There is a default style for all
users, and users must edit it manually. A possible solution is improving
the model to learn the style parameters of input images, such as color
scheme, and automatically configure the generated glyphs. Second, we
applied our approach only to circular glyphs, but it can be potentially
generalized to other glyph types. By analyzing and exploring the design
space of other glyphs, we can extend our dataset and build a model
for parsing all kinds of glyphs. Third, the deconstruction model is not
diverse enough to support circular glyphs in other fields. We collected
circular glyphs designed by experts in the visualization field. Other
fields, such as journalism, could use glyphs for data representation, and
these glyphs could also be collected for diversity. The deconstruction
model could be utilized for many other images with high accuracy by
adopting a dataset with a broadened range.

7 CONCLUSION

In this paper, we introduce GlyphCreator, an automatic system for
generating circular glyphs based on an example-based method. We
collected existing circular glyphs and created a design space of circular
glyphs to analyze the relationship among different visual elements.
With this design space, we built a circular glyph dataset and proposed a
framework that includes a deconstruction model to obtain the layout
of circular glyphs. By utilizing the uploaded circular glyph reference
image and multi-dimensional data in GlyphCreator, users can bind the
data with the layout in a straightforward manner and generate a new
circular glyph after revising the style. We evaluated the deconstruction
model through a quantitative experiment. We also demonstrated the
expressiveness and usability of our approach through a usage scenario
and user interviews. We believe that our work provides a new idea
for automatically generating glyphs in all visualizations via a two-way
method, a loop of visualization and AI. In the future, we plan to extend
this pipeline by analyzing other glyphs and expand the authoring tools
of GlyphCreator to support other creative designs.

ACKNOWLEDGMENTS

This work was supported by NSFC (62072400), Zhejiang Provincial
Natural Science Foundation (LR18F020001), and the Collaborative
Innovation Center of Artificial Intelligence by MOE and Zhejiang
Provincial Government (ZJU).

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

409Ying ET AL.: GlyphCreator: Towards Example-Based Automatic Generation of Circular Glyphs

REFERENCES

[1] 100,000 UK Used Car Data set. https://www.kaggle.com/adityadesai13/used-
car-dataset-ford-and-mercedes. Accessed: 2021-6-30.

[2] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated Extraction and Interpretation of Visualizations
from the Web. In Proceedings of the ACM Conference on Human Factors
in Computing Systems, p. 594, 2018.

[3] R. Borgo, J. Kehrer, D. H. S. Chung, E. Maguire, R. Laramee, H. Hauser,
M. Ward, and M. Chen. Glyph-based Visualization: Foundations, Design
Guidelines, Techniques and Applications. In Proceedings of Eurographics,
pp. 39–63, 2013.

[4] M. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and
H. Pfister. What Makes a Visualization Memorable? IEEE Transactions
on Visualization and Computer Graphics, 19(12):2306–2315, 2013.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[6] N. Cao, C. Shi, W. S. Lin, J. Lu, Y. Lin, and C. Lin. TargetVue: Vi-
sual Analysis of Anomalous User Behaviors in Online Communication
Systems. IEEE Transactions on Visualization and Computer Graphics,
22(1):280–289, 2016.

[7] K. Chen, Y. Wang, M. Yu, H. Shen, X. Yu, and G. Shan. ConfVisExplorer:
A Literature-based Visual Analysis System for Conference Comparison.
Journal of Visualization, 24(2):381–395, 2021.

[8] Y. Chen, Q. Chen, M. Zhao, S. Boyer, K. Veeramachaneni, and H. Qu.
DropoutSeer: Visualizing Learning Patterns in Massive Open Online
Courses for Dropout Reasoning and Prediction. In Proceedings of IEEE
Conference on Visual Analytics Science and Technology, pp. 111–120,
2016.

[9] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu. Towards Automated
Infographic Design: Deep Learning-based Auto-Extraction of Extensible
Timeline. IEEE Transactions on Visualization and Computer Graphics,
26(1):917–926, 2020.

[10] E. B. Chlan and P. Rheingans. Multivariate Glyphs for Multi-Object
Clusters. In Proceedings of IEEE Symposium on Information Visualization,
pp. 141–148, 2005.

[11] M. Cliche, D. S. Rosenberg, D. Madeka, and C. Yee. Scatteract: Auto-
mated Extraction of Data from Scatter Plots. In Proceedings of European
Conference on Machine Learning and Knowledge Discovery in Databases,
vol. 10534, pp. 135–150, 2017.

[12] W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang, J. Lou,
and D. Zhang. Text-to-Viz: Automatic Generation of Infographics from
Proportion-Related Natural Language Statements. IEEE Transactions on
Visualization and Computer Graphics, 26(1):906–916, 2020.

[13] D. Deng, Y. Wu, X. Shu, M. Xu, J. Wu, S. Fu, and Y. Wu. VisImages:
A Large-scale, High-quality Image Corpus in Visualization Publications.
CoRR, 2020.

[14] Z. Deng, D. Weng, J. Chen, R. Liu, Z. Wang, J. Bao, Y. Zheng, and Y. Wu.
AirVis: Visual Analytics of Air Pollution Propagation. IEEE Transactions
on Visualization and Computer Graphics, 26(1):800–810, 2020.

[15] Z. Deng, D. Weng, Y. Liang, J. Bao, Y. Zheng, T. Schreck, M. Xu, and
Y. Wu. Visual Cascade Analytics of Large-scale Spatiotemporal Data.
IEEE Transactions on Visualization and Computer Graphics, 2021.

[16] Y. Drocourt, R. Borgo, K. Scharrer, T. Murray, S. Bevan, and M. Chen.
Temporal Visualization of Boundary-based Geo-information Using Radial
Projection. Computer Graphics Forum, 30(3):981–990, 2011.

[17] Eamonn Maguire and Philippe Rocca-Serra and Susanna-Assunta Sansone
and Jim Davies and Min Chen. Taxonomy-Based Glyph Design - with a
Case Study on Visualizing Workflows of Biological Experiments. IEEE
Transactions on Visualization and Computer Graphics, 18(12):2603–2612,
2012.

[18] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M.
Winn, and A. Zisserman. The Pascal Visual Object Classes Challenge: A
Retrospective. International Journal of Computer Vision, 111(1):98–136,
2015.

[19] V. A. Filipov, V. Schetinger, K. Raminger, N. Soursos, S. Zapke, and
S. Miksch. Gone full circle: A Radial Approach to Visualize Event-based
Networks in Digital Humanities. Visual Informatics, 5(1):45–60, 2021.

[20] J. Fuchs, P. Isenberg, A. Bezerianos, and D. Keim. A Systematic Review of
Experimental Studies on Data Glyphs. IEEE Transactions on Visualization
and Computer Graphics, 23(7):1863–1879, 2017.

[21] S. R. Haynes and T. G. Kannampallil. Learning, Performance, and Anal-
ysis Support for Complex Software Applications. SIGHCI Proceedings,

p. 15, 2004.
[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image

Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778. IEEE Computer Society, 2016.

[23] C. Jensen and L. Anderson. Harvard Graphics 3: the Complete Reference.
McGraw-Hill Osborne Media, 1992.

[24] D. Jung, W. Kim, H. Song, J. Hwang, B. Lee, B. H. Kim, and J. Seo.
ChartSense: Interactive Data Extraction from Chart Images. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems, pp.
6706–6717, 2017.

[25] A. Kembhavi, M. Salvato, E. Kolve, M. J. Seo, H. Hajishirzi, and
A. Farhadi. A Diagram is Worth a Dozen Images. In Proceedings of Euro-
pean Conference on Computer Vision, vol. 9908, pp. 235–251. Springer,
2016.

[26] X. Kui, H. Lv, Z. Tang, H. Zhou, W. Yang, J. Li, J. Guo, and J. Xia. TVseer:
A Visual Analytics System for Television Ratings. Visual Informatics,
4(3):1–11, 2020.

[27] H. Law and J. Deng. CornerNet: Detecting Objects as Paired Keypoints.
In Proceedings of European Conference on Computer Vision, vol. 11218,
pp. 765–781, 2018.

[28] P. Law, W. Wu, Y. Zheng, and H. Qu. VisMatchmaker: Cooperation of
the User and the Computer in Centralized Matching Adjustment. IEEE
Transactions on Visualization and Computer Graphics, 23(1):231–240,
2017.

[29] B. Lee, S. Srivastava, R. Kumar, R. I. Brafman, and S. R. Klemmer.
Designing with Interactive Example Galleries. In Proceedings of ACM
Conference on Human Factors in Computing Systems, pp. 2257–2266,
2010.

[30] P. A. Legg, D. H. S. Chung, M. L. Parry, M. W. Jones, R. Long, I. W.
Griffiths, and M. Chen. MatchPad: Interactive Glyph-Based Visualization
for Real-Time Sports Performance Analysis. Computer Graphics Forum,
31(3):1255–1264, 2012.

[31] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft COCO: Common Objects in Context. In
Proceedings of European Conference on Computer Vision, vol. 8693, pp.
740–755. Springer, 2014.

[32] D. Liu, D. Weng, Y. Li, J. Bao, Y. Zheng, H. Qu, and Y. Wu. SmartAdP:
Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard
Locations. IEEE Transactions on Visualization and Computer Graphics,
23(1):1–10, 2017.

[33] L. Liu, H. Zhang, J. Liu, S. Liu, W. Chen, and J. Man. Visual Exploration
of Urban Functional Zones Based on Augmented Nonnegative Tensor
Factorization. Journal of Visualization, 24(2):331–347, 2021.

[34] M. Liu, S. Liu, X. Zhu, Q. Liao, F. Wei, and S. Pan. An Uncertainty-Aware
Approach for Exploratory Microblog Retrieval. IEEE Transactions on
Visualization and Computer Graphics, 22(1):250–259, 2016.

[35] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. T. Stasko. Data Illustrator: Augmenting Vector Design
Tools with Lazy Data Binding for Expressive Visualization Authoring.
In Proceedings of ACM Conference on Human Factors in Computing
Systems, p. 123, 2018.

[36] R. Ma, H. Mei, H. Guan, W. Huang, F. Zhang, C. Xin, W. Dai, X. Wen, and
W. Chen. LADV: Deep Learning Assisted Authoring of Dashboard Visu-
alizations from Images and Sketches. IEEE Transactions on Visualization
and Computer Graphics, pp. 1–1, 2020.

[37] H. Mansoor, W. Gerych, A. Alajaji, L. Buquicchio, K. Chandrasekaran,
E. Agu, and E. Rundensteiner. ARGUS: Interactive Visual Analysis of
Disruptions in Smartphone-detected Bio-Behavioral Rhythms. Visual
Informatics, 2021.

[38] B. McDonnel and N. Elmqvist. Towards Utilizing GPUs in Information
Visualization: A Model and Implementation of Image-Space Operations.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1105–
1112, 2009.

[39] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. iVoLVER: Interactive
Visual Language for Visualization Extraction and Reconstruction. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems, pp. 4073–4085, 2016.

[40] T. Murray. Theory-based Authoring Tool Design: Considering the Com-
plexity of Tasks and Mental Models. Design Recommendations for Intelli-
gent Tutoring Systems. Authoring Tools and Expert Modeling Techniques,
3:9–29, 2015.

[41] L. O’Callaghan. Volkswagen, audi & skoda recall: Thousands of cars
suddenly lose power in dangerous fault. https://www.express.co.uk/life-
style/cars/1190969/Volkswagen-Audi-Skoda-recall-news-affected-

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022410

model-list-news. Accessed: 2021-6-30.
[42] W. H. Organization. Population Fact Sheets about Cancer.

https://gco.iarc.fr/today/fact-sheets-populations. Accessed: 2021-3-20.
[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, and et al. Py-

Torch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, eds., Advances in Neural Information Processing Systems 32,
pp. 8024–8035. 2019.

[44] J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color
Mappings from Bitmap Images of Visualizations. IEEE Transactions on
Visualization and Computer Graphics, 24(1):637–646, 2018.

[45] C. Qian, S. Sun, W. Cui, J. Lou, H. Zhang, and D. Zhang. Retrieve-
Then-Adapt: Example-based Automatic Generation for Proportion-related
Infographics. IEEE Transactions on Visualization and Computer Graphics,
27(2):443–452, 2021.

[46] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive Construction
of Bespoke Chart Layouts. IEEE Transactions on Visualization and
Computer Graphics, 25(1):789–799, 2019.

[47] W. Ribarsky, E. Z. Ayers, J. Eble, and S. Mukherjea. Glyphmaker: Creating
Customized Visualizations fo Complex Data. Computer, 27(7):57–64,
1994.

[48] T. Ropinski, S. Oeltze, and B. Preim. Survey of Glyph-based Visualization
Techniques for Spatial Multivariate Medical Data. Computers & Graphics,
35(2):392–401, 2011.

[49] T. Ropinski and B. Preim. Taxonomy and Usage Guidelines for Glyph-
based Medical Visualization. In Proceedings of SimVis, vol. 522, pp.
121–138, 2008.

[50] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
ReVision: Automated Classification, Analysis and Redesign of Chart
Images. In Proceedings of the ACM Symposium on User Interface Software
and Technology, p. 393–402, 2011.

[51] J. Schmidt, M. E. Gröller, and S. Bruckner. VAICo: Visual Analysis for
Image Comparison. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2090–2099, 2013.

[52] D. Shi, X. Xu, F. Sun, Y. Shi, and N. Cao. Calliope: Automatic Visual Data
Story Generation from a Spreadsheet. IEEE Transactions on Visualization
and Computer Graphics, 27(2):453–463, 2021.

[53] N. Siegel, Z. Horvitz, R. Levin, S. K. Divvala, and A. Farhadi. FigureSeer:
Parsing Result-Figures in Research Papers. In Proceedings of European
Conference on Computer Vision, vol. 9911, pp. 664–680, 2016.

[54] T.-H. Sun, C.-H. Lai, S.-K. Wong, and Y.-S. Wang. Adversarial Coloriza-
tion of Icons Based on Contour and Color Conditions. In Proceedings
of the 27th ACM International Conference on Multimedia, pp. 683–691,
2019.

[55] K. Umbleja, M. Ichino, and H. Yaguchi. Improving Symbolic Data Vi-
sualization for Pattern Recognition and Knowledge Discovery. Visual
Informatics, 4(1):23–31, 2020.

[56] J. Wang, J. Wu, A. Cao, Z. Zhou, H. Zhang, and Y. Wu. Tac-Miner: Visual
Tactic Mining for Multiple Table Tennis Matches. IEEE Transactions on
Visualization and Computer Graphics, 27(6):2770–2782, 2021.

[57] X. Wang, S. Liu, J. Liu, J. Chen, J. Zhu, and B. Guo. TopicPanorama: A
Full Picture of Relevant Topics. IEEE Transactions on Visualization and
Computer Graphics, 22(12):2508–2521, 2016.

[58] Y. Wang, Z. Sun, H. Zhang, W. Cui, K. Xu, X. Ma, and D. Zhang.
DataShot: Automatic Generation of Fact Sheets from Tabular Data. IEEE
Transactions on Visualization and Computer Graphics, 26(1):895–905,
2020.

[59] M. O. Ward. Multivariate Data Glyphs: Principles and Practice. In
Handbook of Data Visualization, pp. 179–198. 2008.

[60] D. Weng, C. Zheng, Z. Deng, M. Ma, J. Bao, Y. Zheng, M. Xu, and Y. Wu.
Towards Better Bus Networks: A Visual Analytics Approach. IEEE
Transactions on Visualization and Computer Graphics, 27(2):817–827,
2021.

[61] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang, and
H. Qu. AI4VIS: Survey on Artificial Intelligence Approaches for Data Vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
2021.

[62] Y. Wu, Z. Chen, G. Sun, X. Xie, N. Cao, S. Liu, and W. Cui. Stream-
Explorer: A Multi-Stage System for Visually Exploring Events in Social
Streams. IEEE Transactions on Visualization and Computer Graphics,
24(10):2758–2772, 2018.

[63] Y. Wu, D. Weng, Z. Deng, J. Bao, M. Xu, Z. Wang, Y. Zheng, Z. Ding,
and W. Chen. Towards Better Detection and Analysis of Massive Spa-
tiotemporal Co-Occurrence Patterns. IEEE Transactions on Intelligent

Transportation Systems, 22(6):3387–3402, 2021.
[64] H. Xia, N. H. Riche, F. Chevalier, B. R. D. Araújo, and D. Wigdor. DataInk:

Direct and Creative Data-Oriented Drawing. In Proceedings of the ACM
Conference on Human Factors in Computing Systems, p. 223, 2018.

[65] M. Xia, M. Xu, C. Lin, T. Y. Cheng, H. Qu, and X. Ma. SeqDynam-
ics: Visual Analytics for Evaluating Online Problem-solving Dynamics.
Computer Graphics Forum, 39(3):511–522, 2020.

[66] B. Xiao, H. Wu, and Y. Wei. Simple Baselines for Human Pose Estimation
and Tracking. In Proceedings of European Conference on Computer
Vision, vol. 11210, pp. 472–487, 2018.

[67] X. Xie, J. Wang, H. Liang, D. Deng, S. Cheng, H. Zhang, W. Chen,
and Y. Wu. PassVizor: Toward Better Understanding of the Dynamics
of Soccer Passes. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1322–1331, 2021.

[68] K. Xu, M. Xia, X. Mu, Y. Wang, and N. Cao. EnsembleLens: Ensemble-
based Visual Exploration of Anomaly Detection Algorithms with Mul-
tidimensional Data. IEEE Transactions on Visualization and Computer
Graphics, 25(1):109–119, 2019.

[69] S. Ye, Z. Chen, X. Chu, Y. Wang, S. Fu, L. Shen, K. Zhou, and Y. Wu.
ShuttleSpace: Exploring and Analyzing Movement Trajectory in Immer-
sive Visualization. IEEE Transactions on Visualization and Computer
Graphics, 27(2):860–869, 2021.

[70] F. Yu, D. Wang, E. Shelhamer, and T. Darrell. Deep Layer Aggregation.
In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2403–2412, 2018.

[71] F. Zhou, Y. Zhao, W. Chen, Y. Tan, Y. Xu, Y. Chen, C. Liu, and Y. Zhao.
Reverse-engineering Bar Charts Using Neural Networks. Journal of
Visualization, 24(2):419–435, 2021.

[72] X. Zhou, D. Wang, and P. Krähenbühl. Objects as Points. CoRR,
abs/1904.07850, 2019.

[73] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Design-
ing Interactive Visualizations by Demonstration. IEEE Transactions on
Visualization and Computer Graphics, 27(2):304–314, 2021.

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on January 22,2022 at 14:59:04 UTC from IEEE Xplore. Restrictions apply.

