
Computers & Graphics (2020)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Co-skeletons: Consistent Curve Skeletons for Shape Families

Zizhao Wua,b,⇤, Xingyu Chenb, Lingyun Yuc, Alexandru Telead, Jiřı́ Kosinkab

a
School of Media and Design, Hangzhou Dianzi University, China

b
Bernoulli Institute, University of Groningen, the Netherlands

c
Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China

d
Department of Information and Computing Sciences, Utrecht University, the Netherlands

A R T I C L E I N F O

Article history:
Received May 1, 2020

Co-skeleton, curve skeleton, mesh pro-
cessing, shape segmentation

A B S T R A C T

We present co-skeletons, a new method that computes consistent curve skeletons for
3D shapes from a given family. We compute co-skeletons in terms of sampling density
and semantic relevance, while preserving the desired characteristics of traditional, per-
shape curve skeletonization approaches. We take the curve skeletons extracted by
traditional approaches for all shapes from a family as input, and compute semantic
correlation information of individual skeleton branches to guide an edge-pruning process
via skeleton-based descriptors, clustering, and a voting algorithm. Our approach achieves
more concise and family-consistent skeletons when compared to traditional per-shape
methods. We show the utility of our method by using co-skeletons for shape segmentation
and shape blending on real-world data.

c� 2020 Elsevier B.V. All rights reserved.

1. Introduction

Skeletons are thin and locally centered structures which de-
scribe the geometry, topology, and symmetry properties of
shapes compactly and intuitively. This makes skeletons powerful
tools for applications such as shape segmentation [1], manipula-
tion [2, 3], and blending [4]. Existing skeletonization methods
can be classified in methods that compute surface skeletons [5, 6]
and methods that compute curve skeletons [7, 8]. Surface skele-
tons capture shape geometry better, but curve skeletons are much
simpler (and faster) to compute, represent, and analyze, and are
the dominant skeleton type currently used in applications [9].

Among the many existing curve skeletonization, important
di↵erences exist regarding the quality of the produced skeletons,
which is measured by criteria including thinness, centeredness,
compactness, robustness to noise, homotopy equivalence to the
input shape, and computational complexity [12]. Quality issues
create problems when using skeletons in certain applications
such as mesh rigging. Figure 1 shows the curve skeletons (CSs)

⇤Corresponding author: wuzizhao@hdu.edu.cn

(a) Le et al. 2003 [10] (b) Liu et al. 2014 [2]

Fig. 1. Curve skeletons extracted by Le et al. [10] and Liu et al. [2] for mesh

rigging. As visible, the produced skeletons are not always locally centered

and, at places, even exit the shape.

extracted by two such methods. The extracted skeletons exhibit
problems such as shrinkage of end branches with respect to the
corresponding shape parts or even exiting the shape at places.
Other skeletonization methods exhibit di↵erent problems with
respect to the mentioned quality criteria. Given such problems,
most of the skeleton-based mesh rigging approaches require that

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review /Computers & Graphics (2020)

Fig. 2. Top and mid rows: Skeletons extracted from the fourleg subset of the Princeton Shape Benchmark (PSB) [11] using the Mean Curvature Flow [8]

and Mesh Contraction [7] methods, respectively. These skeletons have a variable sampling density and preserve (or not) similar details across di↵erent

shapes. Bottom row: Co-skeletons extracted by our approach are more concise and consistent in preserving similar details across di↵erent shapes.

skeletons are manually specified for the input shape, a process
which is time-consuming and error-prone.

Obtaining high quality curve skeletons — important for appli-
cations like rigging [13] and shape segmentation [1] — has been
done so far by proposing increasingly improved skeletonization
methods. Yet, new methods may introduce new problems, more
user parameters, or have a more complex implementation [9];
and must be thoroughly tested on large shape collections [14, 12].
Another problem of all skeletonization methods is that they can-
not guarantee that they preserve the same level-of-detail on
similar parts of any input shape. Given an actual shape and pa-
rameter settings, details may be kept in the skeleton or simplified
away. This creates inconsistent skeletons from the viewpoint of
applications that use them further to manipulate shapes.

We propose a di↵erent approach: Inspired by recent ap-
proaches on co-analysis of 3D shape collections, rather than
aiming to compute a high-quality skeleton from a single shape,
we use a collection of shapes (of the same kind) to compute their
skeletons. The intuition behind this is that a given skeletoniza-
tion method will be able to extract good-quality skeletons from
most parts of most shapes, and will not fail consistently on the
same parts of all shapes. By combining information from all
extracted skeletons, we obtain co-skeletons which represent well
all shapes in a given family with controlled and consistent sam-
pling density and presence of significant details in all skeletons,
even when large variations exist between individual shapes.

Our method works as follows: Given a 3D shape collection,
we extract the curve skeletons from all shapes, using any existing
good-quality CS method chosen by the user. Next, we use
several descriptors to characterize these skeletons, and use them
to cluster similar branches from di↵erent skeletons. Finally, we
infer the semantic correlation among corresponding edges and
use this information to jointly prune all skeletons to achieve
conciseness (representing CSs with few sampling points and
edges) and consistency (the same type of shape detail creates
the same type of skeleton branch) over an entire shape family.
We show our automatic co-skeleton extraction framework by
applications of shape co-segmentation and shape blending.

Our main contributions are as follows:

1. We present an approach to induce semantic correlations for
curve skeletons of 3D shapes;

2. We propose a semantic-based skeleton pruning approach;

3. We show the usability of our pruned skeletons by applica-
tions of shape co-segmentation and shape blending.

We organize this paper as follows. Section 2 reviews related
work in curve skeletonization. Section 3 outlines our framework.
Section 4 details our pruning algorithm for skeleton consistency.
Section 5 presents results and applications. Section 6 discusses
our proposal and outlines future work directions.

2. Related Work

2.1. Skeleton Extraction

Skeletons, or medial axes, were introduced by Blum [15]
based on the medial axis transform (MAT) which computes
the centers and radii of maximal balls lying within a shape.
Skeletons have been used in many applications, including shape
segmentation [1, 7], manipulation [2, 3], matching [16], and mod-
eling [4]. For additional details, we refer to recent surveys of 3D
skeletonization methods and their applications [9, 17].

3D shapes admit two main skeleton types: Surface skeletons,
defined following Blum’s MAT; and curve skeletons, defined
more loosely as curvilinear (1D) structures locally centered in
the shape [18, 12]. Curve skeletons are much more popular,
since they are considerably simpler and faster to compute, rep-
resent, and manipulate than surface skeletons. Yet, they lack a
universally accepted definition [9]. This has led to many curve
skeletonization methods, each emphasizing di↵erent desirable
properties up to di↵erent extents, e.g., homotopy equivalence to
the input shape, robustness to noise, smoothness, centeredness,
and invariance to isometric shape transformations [14, 12]. For
example, Biasotti et al. [19] proposed Reeb graphs that formalize
a concise topological encoding of shapes and can be embedded

Preprint Submitted for review /Computers & Graphics (2020) 3

MCF method MC method... 5 descriptors (SDF, SC, CF, AGD, GB) spectral clustering with EMD clean up class labels reduce skeleton sampling points co-segmentation blending

Fig. 3. Our method has six steps. Curve skeletons are extracted from 3D input shapes using existing skeletonization methods. These skeletons are next

reduced to five per-face descriptors. The descriptors of all skeletons from a shape family are next clustered. Finally, we prune (simplify) the clustered

data to remove semantic noise (semantic pruning) and obtain skeletons with a small sample count (skeleton pruning). We use co-skeletons for shape

co-segmentation and blending applications. Section 3 details all the pipeline steps.

geometrically to define compact curve skeletons. Hassouna et

al. [20] extract well-centered curve skeletons by tracing curves
seeded at high-divergence points in a gradient vector field. Li et

al. [21] pioneered mesh decimation methods to compute curve
skeletons. Marini et al. [22] suggest shape-prototypes which
summarize the most relevant features of a shape class to help
with 3D shape retrieval.

Contraction methods are arguably the most widely used tech-
niques for curve skeletonization [7, 23, 24, 25] as they are rel-
atively simple to implement, fast, and can handle large and
densely-sampled meshes [12]. Within this class, Au et al. [7] con-
tract a mesh into a zero-volume skeletal shape by implicit Lapla-
cian smoothing with global positional constraints. This mesh
is converted into a 1D curve-skeleton through a connectivity-
surgery process to remove collapsed faces while preserving its
shape and the original topology. Tagliasacchi et al. [8] compute
the Voronoi diagram of a 3D shape’s vertices and its medial poles
and next iteratively use an implicit constrained Laplacian solver
to optimize triangulation by local remeshing until the shape’s
volume vanishes. Upon convergence, the method produces a
medially-centered curve skeleton. In our work, we use both
Au et al. [7] and Tagliasacchi et al. [8] to extract initial curve
skeletons that we further refine into our co-skeletons. Figure 2
(top and mid rows) shows skeletons computed by both these
methods for various shapes. As visible there, these two methods
compute globally similar, but locally di↵erent, curve skeletons.
However, we will show that this does not influence the results
obtained by our co-skeletons.

Sensitivity of the computed skeletons to shape changes, due
to sampling density or small-scale noise, is arguably the key
challenge of all existing skeletonization methods [9]. Sensitivity,
also called instability, is handled in two main ways: First, one
can smooth the input shape prior to skeletonization to remove
noise [26, 27]. Secondly, one can prune the extracted skele-
tons to remove so-called spurious branches, based on various
importance metrics [28, 29, 30]. Rather than relying upon au-
tomatic importance metrics, Giachetti et al. [31] guide skeleton
pruning manually. Jiang et al. [25] propose a curve skeleton
extraction approach by coupled graph contraction and surface
clustering. Baran and Popović [13] present a skeleton extrac-
tion method to automatically rig an unfamiliar character for
skeletal animation. Skeletal importance is typically defined
based on the area of the input shape that contracts to a given
skeleton point [32, 30, 33, 34]. However, no such approach can
ensure that the same pruning level occurs for the same details

present in di↵erent input shapes having possibly di↵erent sam-
pling densities. In contrast, we perform skeleton pruning based
on high-level semantic information extracted from an entire
shape collection. This ensures skeletons that have the same level
of detail for all shapes in such a collection. Figure 2 (bottom
row) is an example that illustrates this property of our results.

Collections of shapes have been studied in the context
of skeletonization: Schaefer and Yuksel [35] introduced an
example-based skeleton-extraction approach for mesh defor-
mation. Zheng et al. [36] proposed a consensus skeleton pruning
approach. Yet, such approaches only deal with mesh sequences

(dynamic meshes with fixed connectivity), used e.g. to capture
di↵erent poses of the same shape. In contrast, our method
handles shape collections showing large variations, including
topological changes and di↵erent shapes — see e.g. the di↵er-
ent animals in the fourleg collection in Fig. 2. Also, note that,
technically, the method in [36] is driven by pairwise skeleton
correspondences. In our case, we do not use pairwise correspon-
dences, but treat an entire family at a time.

Skeleton extraction from natural images is another related
challenging topic [17], with no single method able to consistently

create good skeletons in all cases. To address this, Jerripothula et

al. [37] suggested a joint co-skeletonization and co-segmentation
framework, exploiting inherent interdependencies of skeletons
and segments to assist each other. We are inspired by this work,
but our proposed solution uses a di↵erent technique.

2.2. Shape Co-analysis

There has been recent increasing interest in the co-analysis
of shape collections. The premise is that more information can
be extracted by analyzing a collection than when analyzing in-
dividual shapes. An example hereof is co-segmentation — the
simultaneous segmentation of all shapes in a set in a consistent
manner. This has been shown to be of great utility for modeling
and texturing [38, 39, 40]. Golovinskiy and Funkhouser [41]
pioneered consistent co-segmentation by aligning all shapes
and then clustering their primitives. Following this work, many
co-segmentation approaches have been proposed, using unsuper-
vised learning [39, 42, 43] or semi-supervised learning [44, 45].
Deep learning has shown excellent performance in this direction,
with several methods proposed for shape segmentation [46, 47].
Yet, such methods heavily rely on large training datasets.

Besides co-segmentation, other approaches exist for the co-
analysis of a shape-set. Laga et al. [48] presented an e↵ective al-
gorithm to obtain semantic correspondences between 3D shapes

4 Preprint Submitted for review /Computers & Graphics (2020)

Input AGD CF GB SC SDF

Fig. 4. Feature extraction in our pipeline. Left column: Two examples of input shapes with their initial curve skeletons (red) and the shape faces (blue)

associated with a selected skeleton edge. The other columns show our five feature descriptors computed on the two models (feature names are detailed in

Section 3). These descriptors are aggregated, via their histogram distributions, to form the skeleton-edge descriptors.

that finds part-wise correspondences. Kaick et al. [49] con-
structed a unified shape co-hierarchy from a shape set, providing
a richer characterization of the shape-set beyond coarse template-
based or part-level correspondence. Yumer and Kara [50] pro-
pose a co-abstraction method where shapes in a set are abstracted
as much as possible while still preserving the unique geomet-
ric characteristics distinguishing them from each other. Xu et

al. [51] synthesize new shapes by analyzing a given shape-set
using genetic algorithms. Kim et al. [52] construct cuboid
model templates of large shape sets. Fish et al. [53] learn the
configurations of a shape-set as geometric distributions. Yumer
and Kara [54] use co-constrained handles to deform shape-sets
to find and respect the geometric and spatial constraints among
di↵erent shape parts. Our work is inspired by these techniques:
We compute family-consistent skeletons in terms of sampling
density and semantic relevance. Hence, even if the underly-
ing curve-skeletonization method that we use is imperfect, the
problems that it creates on individual shapes are alleviated or
removed by considering all shapes in the family.

3. Proposed Method

Figure 3 shows the pipeline of our method. Our input is a
collection of N shapes I = {I1, . . . , IN}, Ii ⇢ R3, of one shape
family. By a family, we mean a set of shapes that belong to the
same semantic class, e.g., four-legged animals or chairs. Shapes
are represented as boundary meshes [9]. The goal of our method
is to obtain family-consistent curve skeletons S = {S 1, . . . , S N},
one for each shape in the input collection. For each shape Ii, we
consider its curve skeleton S i, modeled as a set of 3D sample
points Pi connected by edges Ei, i.e., S i = (Pi, Ei), Pi ⇢ R3,
Ei = {ei,1, ei,2, . . . , ei,ni

} ⇢ Pi ⇥ Pi. For a collection I, we first
extract the initial skeletons S i for each shape Ii individually,
using existing state-of-the-art methods [7, 8]. We then extract
features for all skeleton edges ei, j and cluster edges in a joint
descriptor space to infer their semantic correlation. To obtain
concise and family-consistent skeletons, we propose and apply
two pruning algorithms, which lead to co-skeletons S i suitable

for shape co-segmentation and shape blending. We next describe
each step of our pipeline in turn.

Initial Skeleton Extraction: We extract shape skeletons
S i using the mean curvature flow (MCF) method [8] or,
alternatively, the mesh contraction (MC) method [7]. Any other
curve skeletonization method can be used directly, if desired.
For selecting alternatives to MCF and MC, one can study the
survey of Sobiecki et al. [14] to pick the method of choice based
on various desirable properties, such as speed, ease of use, type
of input (mesh or voxel volume), or robustness. For brevity,
we next show results based on the MCF method [8], which we
found slightly easier to use than MC and producing smoother
curve skeletons (see also Fig. 2). However, using MC yields
very similar co-skeletons to MCF, so the choice between the
two is largely left to the user’s preference. Regardless of the
skeletonization method choice, we compute skeletons for each
shape with approximately |Ei| = 100 skeleton edges each.

Skeleton Description: No matter which skeletonization tech-
nique one uses, every skeleton edge can be mapped to a set
of shape faces [9]. This mapping [55], known as the feature
transform FT : S ! P(I), with P denoting the power set,
maps FT (e 2 S) to the set of faces in I that correspond to a
skeleton edge e. The FT complements topological shape infor-
mation, captured by the curve-skeleton’s branching structure,
with geometric information that encodes which skeleton frag-
ments capture which shape-surface details. Both information
types are essential for semantic or functional prediction.

We use five shape descriptors to characterize surface de-
tails, similar to previous co-analysis approaches [39, 42, 56]:
Shape Diameter Function (SDF) [57], Conformal Factor
(CF) [58], Shape Contexts (SC) [59], Average Geodesic Dis-
tance (AGD) [60], and Geodesic distance to the Base of the
shape (GB) [39]. These descriptors are defined on mesh faces.
Taking the computation of SC as an example, given a mesh face,
we compute the distribution of all other faces (weighted by their
area) in logarithmic geodesic-distance bins and uniform-angle

Preprint Submitted for review /Computers & Graphics (2020) 5

bins, where angles are measured relative to the normal of each
face. Hence, each shape face is described by five scalar values
that correspond to the five above mentioned descriptors.

Given a skeleton edge ei, j 2 S i with its associated faces
FT (ei, j) 2 Ii and their face descriptors, we use normalized
histograms with a specified bin value to measure the feature
distribution of ei, j. Using histograms ensures that the number of
faces |FT (ei, j)| belonging to a skeleton edge ei, j is normalized
over all skeleton edges. We next compute a so-called descriptor

space over all shapes Ii in a family. Figure 4 shows two exam-
ples. The leftmost column shows the faces (blue) associated to a
skeleton edge (red). The other columns show the five feature
descriptors we compute, color-coded on a rainbow colormap.
As explained, these descriptors are ultimately recorded on the
skeleton edges via their feature histograms.

Skeleton Clustering: As already explained, there is no unan-
imously accepted formal definition of 3D curve skeletons, let
alone of co-skeletons for a shape family. This implies that it is
di�cult to define consistency. Hence, we proceed by process-
ing all skeleton edges in a shape family in a unified and global
manner. As we do not have explicit semantic information, we
resort to clustering, which is the approach of choice in many
related co-analysis techniques. We therefore simplify (cluster)
all edges of all skeletons of a shape family, together with their
computed descriptor values, in the per-family descriptor space.
To simplify notation, let ea and eb be two skeleton edges in the
whole family. For each descriptor, let pa = FT (ea) be the set of
faces corresponding to an edge ea. Let ha,k be the histogram over
pa of the k-th descriptor (1  k  5). We define the dissimilarity

between two edges ea and eb with respect to the k-th descriptor
as

dk(ea, eb) = EMD(ha,k, hb,k),

where EMD(h, h̄) is the Earth Mover’s Distance [61] between
histograms h and h̄. EMD is a typical method for evaluating
dissimilarity between two multidimensional distributions in a
feature space. We next apply a Gaussian kernel to the distances
dk to build an a�nity matrix Wk = (wa,b,k) for each descriptor k,
with entries

wa,b,k = exp

�dk(ea, eb)

2�2

!
, (1)

where wa,b,k is the dissimilarity between ea and eb for the k-th
descriptor. We set the number of bins to 50 for each histogram,
and � to the mean of all dissimilarities, respectively.

We now seek a way to combine the five a�nity matrices Wk

into a single matrix, to be next used to perform the co-skeleton
computation. We note that our five descriptors characterize
partially-related shape aspects. For instance, the AGD and CF
descriptors take typically large values on a shape’s center and
low values on its extremities; see Fig. 4. Hence, simply merging
the five a�nity matrices Wk into a single matrix would result in
redundant information. To avoid this, we use a�nity-aggregation
spectral clustering [42] to jointly perform feature selection and
clustering — that is, reduce the amount of redundant information
and also decompose the resulting information into self-similar
subsets. For this, we proceed as follows: Let ↵ = [↵1, . . . ,↵5]

Fig. 5. Skeleton edge clustering in joint feature space. Family-consistent

semantic correlation can be deduced from the clusters.

be weights associated to the a�nity matrices W1, . . . ,W5 that
indicate how much each matrix contributes to describing similar-
ity over the shape family. We formulate the a�nity-aggregation
spectral clustering as

min
↵,F

5X

k=1

X

a,b

↵kwa,b,kk fa � fbk2, (2)

where F = [f1, · · · , fm] is the indicator vector in joint feature
space having a total of m samples.

The minimization in Eqn. 2 involves two unknown vectors,
↵ and F. To solve for them, we use a two-step minimization
approach that alternatively fixes one unknown vector and varies
the other. During optimization, two additional constraints must
be satisfied: The first one comes from normalized spectral clus-
tering, i.e., the final diagonal matrix D must satisfy

1 = F
0
DF = F

0(↵1D1 + · · · + ↵5D5)F =
5X

k=1

↵k sk, (3)

where

sk = F
0
DkF

and Dk is a diagonal matrix whose i-th diagonal element is the
sum of the elements in the i-th row of Wk. Using this con-
straint, spectral clustering typically converges to a result [62].
The second constraint comes from the Cauchy-Schwartz inequal-
ity, which leads to constraining the sum of the weighted matrices
in a normalized condition, i.e.,

5X

k=1

p
↵k = 1. (4)

By applying the Lagrange multiplier method to the constraints
in Eqns. 3 and 4, the problem of finding ↵ can be reduced to
a one-dimensional line-search problem, which is easy to solve.
For more details, we refer the interested reader to [63].

After obtaining F, we run k-means in feature space to cluster
the data into C classes, where C is assigned according to the
number of parts of each shape in the input family I, under

6 Preprint Submitted for review /Computers & Graphics (2020)

human supervision. That is, for a given shape family, the user
has to decide what is a suitable number of parts that typical
shapes in that family have — or, putting it di↵erently, by how
many parts the user wants to model shapes in that family.
Figure 5 shows our clustering result on the fourleg dataset,
visualized using t-SNE [64] with di↵erent clusters colored
di↵erently. Points that are close in the embedding (2D) space
have thus similar feature vectors. Skeleton edges that belong
to the same cluster are assumed to be semantically similar.
Note that this assumption is reasonable as many co-analysis
algorithms operate under it (see Sec. 2). As the figure shows,
four large clusters appear, which correspond to four parts of
shapes in the fourleg dataset.

Semantic Pruning: We next use semantic pruning to remove
so-called semantic noise, which occurs in our clustering
due to three reasons: (1) Shape meshes may contain noise,
which propagates into the five descriptors. (2) The descriptors
themselves contain a certain amount of fuzziness, as they only
measure geometric properties rather than the ‘true’ semantic
ones. (3) Our feature selection and clustering steps may
introduce artifacts. To remedy these issues, we introduce a
semantic pruning step. This step uses the connectivity of
skeleton edges, based on the idea that two connected skeleton
edges have a high probability of carrying the same semantic
information. Importantly, semantic pruning only ‘merges’ the
semantic information extracted from di↵erent skeletons in the
same family; it does not actually remove skeleton nodes, a
task which is done next by the skeleton pruning. We describe
semantic pruning in detail in Sec. 4.1.

Skeleton Pruning: A final concern is to compute compact co-
skeletons, i.e., having a small number of points. This assists,
speed-wise, all operations that next use co-skeletons. To ob-
tain compact co-skeletons, we carry out skeleton pruning to
reduce potential skeleton over-sampling. Since existing skeleton-
pruning algorithms do not take into account semantic part infor-
mation over a family of shapes [9], we propose a new pruning
procedure that considers and respects such semantic properties.
We describe skeleton pruning in detail in Sec. 4.2.

4. Skeleton Pruning Details

We next describe the semantic and skeleton pruning algo-
rithms which aim to reduce semantic noise, respectively over-
sampling, in our produced co-skeletons.

4.1. Semantic Pruning

As stated in Sec. 3, our semantic pruning exploits the obser-
vation that two connected skeleton edges usually hold the same
semantic information. Hence, this connectivity information can
add extra information to the initial clustering results.

Our semantic pruning algorithm exploits four properties of
a skeleton edge to measure the confidence that two skeleton
edges fall within the same semantic part. These are the length
of the edge, the angles between the edge and the two edges

Fig. 6. Semantic pruning for leaf skeleton edge (top) and a joint skeleton

edge (bottom). Colors show class. The role of semantic pruning is to clean

up class labels, not to remove edges; skeleton pruning does the latter.

connected to it, and the semantic information of the connected
edges themselves.
Edge length: Given a skeleton edge ei, we compute its normal-
ized length li (with respect to the longest edge in I, so li 2 [0, 1])
and its angles �i, j to edges Ni = {e j} to which ei is connected in
the skeleton graph E. Let the cluster index of ei, as computed
by k-means (Sec. 3), be denoted by ci 2 [1, . . . ,C]. Given our
clustering, ci thus encodes semantic similarity of the edges. With
the above, we define the confidence score Ki of ei as

Ki = �li +
X

e j2Ni

bi, jl j�(i, j), (5)

where �(i, j) = 1 when ci = c j and �(i, j) = �1 otherwise. The
hyperparameter � (default: 1.5) defines the relative weight given
to edge lengths vs edge angles in the confidence score.

Edge angles: The angles �i, j are first normalized into [0, 1] by
computing

b̂i, j = (1 + cos �i, j)/2 (6)

and then mapped by a Gaussian kernel to yield the weights

bi, j = exp

0
BBBBBB@�

b̂
2
i, j

2

1
CCCCCCA .

This way, the smaller the angle �i, j, the smaller the final weight
bi, j. When �i, j = ⇡, we obtain the highest value of bi, j = 1.

Equation 5 assigns a low confidence to an edge ei when its
connected edges e j have di↵erent semantic definition, i.e., come
from di↵erent clusters than ei. Conversely, a high confidence
score tells that e j has the same semantic information as ei.

We next sort all skeleton edges ei of a shape collection ascend-
ingly on their scores Ki and process them in this order as follows.
For each ei, we refine its confidence score Ki to equal the one
of its highest-confidence edge-neighbor, i.e., Ki = maxe j2Ni

K j.
After processing an edge, we refresh its confidence score and
that of its neighbours. We repeat the process until we have pro-
cessed approximately 10% of all edges (see Fig. 6). This value
has been set empirically based on tests comprising many shape
categories.

4.2. Skeleton Pruning

From the initial skeletons with their pruned semantic at-
tributes, we now perform skeleton pruning to reduce over-
sampling and to remove spurious branches. This way, we achieve
compact co-skeletons that describe the respective shapes with a
small number of sampling points and edges.

Preprint Submitted for review /Computers & Graphics (2020) 7

Fig. 7. Illustration of our skeleton pruning process. A skeleton node is

removed depending on its associated angle and the lengths of its incident

edges.

Fig. 8. A correct case (left) and a wrong case (right) of semantic pruning

in one example. Our approach may fail to deal with the case of successive

semantic noise in skeleton edges.

In contrast to semantic pruning, we now focus on the nodes
(vertices) xi 2 P of the curve skeletons. We categorize all nodes
into three groups: leaf, joint, and branch. A leaf node is incident
with only one skeleton edge; a joint node with two edges; and a
branch node with at least three edges. As most nodes are joint
nodes in curve skeletons, we focus on pruning those only. Also,
not pruning leaf or branch nodes ensures that the topology of
the pruned skeletons stays identical to the initial ones. Node
positions are not altered by pruning, so the pruned skeletons
maintain their centeredness with respect to the original shapes.

We exclude from pruning joint nodes whose incident edges
carry di↵erent semantic information (cluster labels ci). Pruning
such nodes would be di�cult, as we would need to somehow
merge di↵erent cluster labels into newly created edges. Let ei

and e j be the two incident edges for a node candidate for pruning,
and let �i, j be the angle spanned by these edges. We use �i, j and
the normalized edge lengths li and l j, defined as in Sec. 4, to
compute a node confidence score as

Vi, j = (li + l j)b̂i, j (7)

with b̂i, j defined by Eqn. 6. Following Eqn. 7, nodes with large
angles and with short incident edges have low confidence values.
Conversely, nodes with small angles and long incident edges get
high confidence values. This models the fact that we want to
prune densely-sampled and relatively-straight skeleton branches.
We sort all skeleton nodes ascendingly on their confidence values
Vi, j and prune (remove) nodes in this order, one at a time. After
each node removal, we recompute the confidence scores Vi, j

of the node’s two neighbors in the skeleton graph. We prune
until approximately 75% of the joint nodes are pruned. Di↵erent
thresholds yield a more, respectively less, aggressive skeleton
simplification, as desired by the application at hand (see Fig. 7).

5. Results and Applications

We tested our method on a PC with an Intel 4GHz i7 processor
and 8GB RAM. Our time complexity mainly depends on the
descriptor computation. Clustering takes under 1 minute with 20
iterations for 2K skeleton edges. Semantic pruning and skeleton
pruning computations are linear in skeleton size, taking one
second for 2K skeleton edges. Overall, our end-to-end pipeline

takes about 8 minutes for small datasets (20 shapes with around
2K skeleton edges/shape), and scales linearly for larger data.

We demonstrate the utility of our co-skeletons by comparing
our results with the raw curve skeletons (extracted as explained
in Sec. 5.1). We also show co-skeletons in action in two applica-
tions: shape segmentation and shape blending (Sec. 5.2).

5.1. Co-skeleton results

We compare our co-skeletons with the initial MCF and MC
curve skeletons [7, 8]. As test data, we used the Princeton Shape
Benchmark (PSB) dataset [11], which contains sets of shapes of
multiple types, e.g., animals, chairs, human models, furniture,
and vehicles. Figure 2 shows that our co-skeletons are signifi-
cantly more concise (have fewer nodes) than the original curve
skeletons, while preserving overall desirable characteristics such
as centeredness and topology. Moreover, each edge of our co-
skeletons is annotated with semantic information (color-coded in
Fig. 2). For instance, all edges pertaining to the animals’ heads,
legs, or rump, have the same color. Such semantic information
can next be used in a wide range of applications, such as shape
matching, retrieval, or segmentation.

Figure 8 shows an additional result of our pruning: In most
cases, even in the presence of semantic noise, our approach suc-
ceeds. Yet, in cases with significant semantic noise, our approach
may fail. This is due to the fact that our method uses a voting
mechanism that takes into account the semantic information of
connected skeleton edges. One potential remedy is the use of a
better, more robust, initial skeletonization method, than [8] or [7].
Any (existing or future) skeletonization method that accepts 3D
meshes as input, and produces a polyline representation of the
curve skeleton, together with the feature transform of its points,
is directly applicable.

5.2. Co-skeleton Applications

We next aim to show the potential of co-skeletons by pre-
senting two applications that may benefit from them: shape

Table 1. Comparison of the average accuracy (Eqn. 8) of our co-

segmentation results vs existing techniques [39, 43, 42, 46, 47]. We sepa-

rate unsupervised techniques [39, 43, 42] and supervised ones [46, 47] for

fair comparison. [46, 47] use only 6 training shapes in their experiments.

Shape Average accuracy per category

category Ours [39] [43] [42] [46] [47]
Human 83.2 - 70.4 78.0 - -
Glasses 95.8 - 98.3 92.4 96.78 97.15
Airplane 80.2 - 83.3 79.6 95.56 93.90

Ant 88.1 - 92.9 90.1 - -
Chair 93.8 85.0 89.6 87.6 97.93 97.05

Octopus 92.4 - 97.5 96.8 98.61 98.67
Table 98.6 - 99.0 98.4 99.11 99.25
Teddy 89.8 - 97.1 94.9 98.00 98.04
Hand 83.4 - 91.9 90.3 - -
Plier 80.9 - 86.0 83.4 95.01 95.71
Fish 80.3 - 85.6 82.4 96.22 95.63
Bird 76.9 - 71.5 72.0 87.51 89.03

Armadillo 67.6 - 87.3 78.5 - -
Fourleg 92.1 77.3 88.7 87.7 - -

Candelabra 82.5 84.8 93.9 97.2 - -
Lamp 91.1 94.1 90.7 98.4 - -

8 Preprint Submitted for review /Computers & Graphics (2020)

(a) Fourleg dataset (b) Human dataset

Fig. 9. Segmentation results based on our co-skeletons. Di↵erent colors depict di↵erent semantic parts. The pruned (co-)skeletons inherently encode

co-segmentation results. Further results can be found in Fig. 13 in the Appendix.

a) Liu & Zhang [65]

g) Li et al. [21]

b) Lien et al. [66]

h) Lee et al. [67, 68]

c) Attene et al. [69]

i) Reniers et al. [70]

d) Tierny et al. [71]

j) Reniers et al. [72]

e) Reniers et al. [72]

k) Feng et al. [73]

f) Feng et al. [73]

Our method (MFC)

Our method (MFC) Our method (MC)

Our method (MC)

Fig. 10. Comparison of our co-skeleton segmentation using MC and MCF skeletons with nine other segmentation methods.

co-segmentation and shape blending.

Co-segmentation: Since skeleton edges are inherently linked
to collections of faces of the input shape(s), we can use the se-
mantic information our algorithm produces to segment shapes.
Like state-of-the-art co-segmentation approaches [39, 43, 42],
we also use the graph cut algorithm [74] to optimize the bound-
aries of di↵erent segments. Figure 9 shows several segmentation
results based on our co-skeletons for the fourleg (Fig. 9a) and
human datasets (Fig. 9b). As visible, the produced segmenta-
tions are consistent, in the sense that di↵erent shapes (from the
same family) get segmented at approximately the same level
of detail — four limbs, rump, and head, for the fourleg shapes,
and rump, head, legs (thigh, calf, foot), and hands (forearm,
arm), respectively. However, details such as ears or horns for the
fourleg shapes, are sometimes not separately segmented, for the
shapes in which they are very small.

We next compare our co-segmentation results to five state-
of-the-art methods [39, 43, 42, 46, 47]. Note that these are also
co-segmentation methods which consider shape families rather

than individual shapes. Similar to these methods, we measure
the amount of area of a shape that is labeled correctly as

acc(I) =
P

i ai�(ci, ti)P
i ai

, (8)

where ai, ci, and ti are the area, label computed by our co-
segmentation, and respectively ground-truth label of face i of a
given shape I, and � is Kronecker’s delta.

Table 1 lists the accuracy values averaged per shape family for
the PSB benchmark, with unsupervised and supervised methods
reported separately. It shows that our co-segmentation achieves
comparable results for this benchmark in the unsupervised group.
However, we gain better performance for some shape families,
e.g., human and fourlegs, due to the semantic pruning step. Our
results are driven by skeletons, so they contain both skeleton and
segmentation information, in contrast to other pure segmenta-
tion approaches. We also see that supervised learning methods
perform overall better than unsupervised ones. Yet, as said, su-
pervised methods require significant training data, which we do
not need. See also Fig. 11 for additional insights.

Preprint Submitted for review /Computers & Graphics (2020) 9

(a) Segmentation using the method of Sidi et al. [39]

(b) Segmentation using the method of Wu et al. [42]

Fig. 11. Segmentation results using existing methods can lead to wrong part

prediction. Our method improves on these results (see Figure 9).

Finally, we compare our segmentation results with nine classi-
cal segmentation methods, which do not consider shape families
(that is, which are not of the co-segmentation type). Figure 10
shows the results for the hand and horse shapes from the PSB
benchmark. The rightmost two columns show our results ob-
tained with co-skeletons constructed from Mesh Contraction
(MC) [7], respectively Mean Curvature Flow (MCF) [8] base
skeletons. We consider in the comparison both skeleton-based
and surface-based segmentation methods, as follows. In the first
class, Reniers et al. [70] detect curve skeleton junctions and use
these to trace geodesic cuts to segment the parts of a shape. The
method was further improved in [72] to reduce oversegmentation.
Tierny et al. [71] segment shapes by analyzing their Reeb graphs,
which are related to curve skeletons. Lien et al. [66] formulate
(and solve) shape segmentation and curve-skeleton computation
as a joint optimization problem. Feng et al. [73] extend the
geodesic-cut-based segmentation in [70, 72] to surface skeletons,
which encode both shape geometry and topology, thus provide
more information for the segmentation. Finally, Li et al. [21]
use mesh decimation methods for both shape segmentation but
also their curve-skeleton computation.

In the second class, we have methods that segment shapes
purely based on the information encoded by their surface. Lee
et al. [67, 68] segment surface meshes using snake cuts which
are optimized based on local mesh features such as curvature
and excentricity. Attene et al. [69] segment shapes by fitting
primitives from a given set (library). Liu and Zhang [65] en-
code the shape’s faces into a similarity matrix which they then
decompose by spectral clustering.

Overall, we see that our segmentation results (Fig. 10 right-
most two columns) compare very favorably with existing meth-
ods. In particular, our segment borders are smooth and wrap
naturally around the shape, while this is not always the case for
the other methods (see Fig. 10 c, h, i). Also, our co-skeletons
ensure that there is no oversegmentation present, a phenomenon
that can be observed for some of the other methods (Fig. 10 b,

d, i). From these and other tested examples, we noticed that
our segmentation method produces results most similar to the
skeleton-cut method of Feng et al. (see Fig. 10 f, k). This can
be explained by the fact that both methods optimize for smooth
cuts, though with di↵erent mechanisms (Feng et al. use geodesic
tracing; we use graph cuts). Also, both methods use skeletons to
drive the segmentation. However, while we use curve skeletons
which, as explained in Sec. 2 are simple and fast to compute, in
particular by the MC and MCF methods that we use here, Feng
et al. use surface skeletons, which are considerably slower and
more complex to compute and analyze.

Figure 10 shows an additional insight: We see that our
segmentations obtained by skeletons computed with two quite
di↵erent methods (MC and MCF) are very similar. This is due
to the fact that we do not use the raw skeletons for segmentation,
but the co-skeletons which, as explained, stabilize skeletons
over an entire family by removing outlier details. Further, this
suggests that our segmentation approach based on co-skeletons
does not strongly depend on the underlying skeletonization
method. Hence, one can obtain similar segmentation results by
substituting MC or MCF with other, better (e.g., faster and/or
easier to use) skeletonization methods.

Shape Blending: Besides shape segmentation, other applica-
tions also benefit from co-skeletons, including shape blending.
Raw skeletons extracted using even state-of-the-art algorithms
are typically inadequate for shape blending, due to the lack of
semantic information on skeleton edges and/or over-sampling.
To use skeletons, manual post-processing for cleaning and/or
annotation is typically needed. In contrast, our co-skeletons can
be directly used for shape blending.

We show this by using our co-skeletons to perform shape
blending by the technique of Alhashim et al. [4]. We first use
skeleton edges to reconstruct the spatio-structural graph, and
augment this graph by constructing morphing paths between
semantically-correlated parts/edges of di↵erent shapes of a fam-
ily. This allows us to keep track of evolving states of the shapes
and maintain the topological constraints needed for blending.
Next, we select from the obtained results those which show plau-
sible blends and combinations (this selection is done by the user
based on what one actually deems to be plausible for a given
application context). Finally, we reconstruct shapes based on
the structure graphs through the feature transform (FT) mapping
from skeleton edges to the shape faces. This yields new blended
shapes within the input family. Figure 12 shows several exam-
ples of blended shapes, demonstrating the e↵ectiveness of our
co-skeletons for family-based shape blending.

6. Discussion and Conclusion

We have presented a novel approach to extracting co-skeletons
of a given set of related shapes. In contrast to per-shape skele-
tons, our co-skeletons have similar quality, measured in terms
of simplification level, centeredness, and preservation of details
across all considered shapes in a family. Our method has two
main use cases. First, we reduce the dependence on the avail-
ability of a high-quality skeletonization method, which may not

10 Preprint Submitted for review /Computers & Graphics (2020)

Fig. 12. Evolution results on the fourleg dataset. Using our co-skeletons, we can easily generate new shapes by evolving di↵erent combinations across each

family. See Fig. 2 for the initial shapes in the family.

be easy to set up for any set of shapes. Secondly, we maximize
the likelihood that the user obtains consistent skeletons over
similar-type shapes with no additional parameter tweaking e↵ort.
We show the added value of co-skeletons on two applications:
shape co-segmentation and shape blending.

While e↵ective, easy to use, fast, and generic, our method
has some limitations. First, we use multiple surface-based de-
scriptors to infer the semantic relationships between skeleton
edges by ‘mapping’ such edges to similar surface parts. Yet, the
exact relation between specific types of skeleton fragments (e.g.,
branch ends, junctions, or high-curvature zones) and specific sur-
face details (e.g. edges, dents, tubular structures, or other detail
types) is not yet fully clear. We aim to study this relationship in
more detail, so we are next able to guarantee that the extracted
co-skeletons account for specific shape-detail types that are of
interest for users in specific applications.

Secondly, we used two curve-skeletonization methods [7, 8]
to extract initial skeletons. It is important to study how
our co-skeleton proposal behaves when using other curve-
skeletonization methods (for a candidate set, see [9, 14]), so as
to increase the confidence that our co-skeleton quality does not
(strongly) depend on the choice of the underlying skeletoniza-
tion method. In the long run, we aim to remove this dependency
on a specific skeletonization method by extracting co-skeletons
directly from a shape set. Thirdly, we used here a set of 5 shape
descriptors (Sec. 3) which are well-known for related tasks in
shape analysis literature. Whether other descriptors would per-
form better for our task, is an open question.

Finally, concerning the comparison with unsupervised shape
segmentation methods, we should say that our co-segmentation
benefits from additional information, present in the number of
shape parts which is set by the user, which the aforementioned
methods do not have. This shows, on the one hand, that adding
such semantic information (which is available once we consider
an entire shape family) benefits segmentation. On the other hand,
this should not be seen as a limitation of unsupervised methods
since these methods do not utilize such extra information.

Our co-skeleton validation is currently based on only two
applications: shape co-segmentation and blending. While the
initial results presented here are encouraging, it is of high added

value to examine how co-skeletons work for other applications
such as shape animation and morphing, and to evaluate our
co-skeletons on other benchmark datasets, such as [75].

References

[1] Reniers, D, Telea, A. Skeleton-based hierarchical shape segmentation.
In: Proc. SMI. 2007, p. 179–188.

[2] Le, BH, Deng, Z. Robust and accurate skeletal rigging from mesh
sequences. ACMTransGraph 2014;33(4):84:1–84:10.

[3] Yan, H, Hu, S, Martin, RR, Yang, Y. Shape deformation using a skeleton
to drive simplex transformations. IEEE TVCG 2008;14(3):693–706.

[4] Alhashim, I, Li, H, Xu, K, Cao, J, Ma, R, Zhang, H. Topology-
varying 3D shape creation via structural blending. ACM Trans Graph
2014;33(4):158:1–158:10.

[5] Manzanera, A, Bernard, TM, Prêteux, FJ, Longuet, B. Medial faces
from a concise 3D thinning algorithm. In: Proc. ICCV. 1999, p. 337–343.

[6] Amenta, N, Choi, S, Kolluri, RK. The power crust. In: Proc. ACM SMA.
2001, p. 249–266.

[7] Au, OK, Tai, C, Chu, H, Cohen-Or, D, Lee, T. Skeleton extraction by
mesh contraction. ACM Trans Graph 2008;27(3):44:1–44:10.

[8] Tagliasacchi, A, Alhashim, I, Olson, M, Zhang, H. Mean curvature
skeletons. Comp Graph Forum 2012;31(5):1735–1744.

[9] Tagliasacchi, A, Delamé, T, Spagnuolo, M, Amenta, N, Telea, A. 3D
skeletons: A state-of-the-art report. Comp Graph Forum 2016;35(2):573–
597.

[10] Liu, P, Wu, F, Ma, W, Liang, R, Ouhyoung, M. Automatic animation
skeleton construction using repulsive force field. In: Proc. IEEE Pacific
Graphics. 2003, p. 409–413.

[11] Chen, X, Golovinskiy, A, Funkhouser, T. A benchmark for 3D mesh
segmentation. ACM Trans Graph 2009;28(3):1–12.

[12] Sobiecki, A, Yasan, H, Jalba, A, Telea, A. Qualitative comparison
of contraction-based curve skeletonization methods. In: Proc. ISMM.
Springer; 2013,.

[13] Baran, I, Popovic, J. Automatic rigging and animation of 3D characters.
ACM Trans Graph 2007;26(3):72.

[14] Sobiecki, A, Jalba, A, Telea, A. Comparison of curve and surface
skeletonization methods for voxel shapes. Patt Rec Lett 2014;47:147–156.

[15] Blum, H. A transformation for extracting new descriptors of shape. In:
Models for the perception of speech and visual form. 1967,.

[16] Au, OK, Tai, C, Cohen-Or, D, Zheng, Y, Fu, H. Electors voting for fast
automatic shape correspondence. Comput Graph Forum 2010;29(2):645–
654.

[17] Saha, P, Borgefors, G, di Baja, GS. A survey on skeletonization algo-
rithms and their applications. Patt Recogn Lett 2016;(76):3–12.

[18] Cornea, ND, Silver, D, Min, P. Curve-skeleton properties, applications,
and algorithms. IEEE TVCG 2007;13(3):530–548.

[19] Biasotti, S, Falcidieno, B, Spagnuolo, M. Extended Reeb graphs for
surface understanding and description. In: Proc. DGCI. Springer; 2000, p.
185–197.

Preprint Submitted for review /Computers & Graphics (2020) 11

[20] Hassouna, MS, Farag, AA. Variational curve skeletons using gradient
vector flow. IEEE Trans Patt Anal Mach Intell 2009;31(12):2257–2274.

[21] Li, X, Woon, TW, Tan, TS, Huang, Z. Decomposing polygon meshes
for interactive applications. In: Proc. ACM SI3D. 2001, p. 35–42.

[22] Marini, S, Spagnuolo, M, Falcidieno, B. Structural shape prototypes for
the automatic classification of 3d objects. IEEE Computer Graphics and
Applications 2007;27(4):28–37.

[23] Cao, J, Tagliasacchi, A, Olson, M, Zhang, H, Su, Z. Point cloud
skeletons via Laplacian based contraction. In: Proc. SMI. 2010, p. 187–
197.

[24] Chuang, M, Kazhdan, MM. Fast mean-curvature flow via finite-elements
tracking. Comput Graph Forum 2011;30(6):1750–1760.

[25] Jiang, W, Xu, K, Cheng, Z, Martin, RR, Dang, G. Curve skeleton
extraction by coupled graph contraction and surface clustering. Graphical
Models 2013;75(3):137–148.

[26] Shen, W, Bai, X, Hu, R, Wang, H, Latecki, LJ. Skeleton growing and
pruning with bending potential ratio. Pattern Recog 2011;44(2):196–209.

[27] Ward, AD, Hamarneh, G. The groupwise medial axis transform for fuzzy
skeletonization and pruning. IEEE TPAMI 2010;32(6):1084–1096.

[28] Bai, X, Latecki, LJ, Liu, W. Skeleton pruning by contour partitioning
with discrete curve evolution. IEEE TPAMI 2007;29(3):449–462.

[29] Liu, H, Wu, Z, Zhang, X, Hsu, DF. A skeleton pruning algorithm based
on information fusion. Pattern Recog Letters 2013;34(10):1138–1145.

[30] Reniers, D, van Wijk, JJ, Telea, A. Computing multiscale curve and
surface skeletons of genus 0 shapes using a global importance measure.
IEEE TVCG 2008;14(2):355–368.

[31] Barbieri, S, Meloni, P, Usai, F, Scateni, R. Skeleton lab: an interactive
tool to create, edit, and repair curve-skeletons. In: Proc. Smart Tools and
Apps for Graphics – Eurographics Italian Chapter. 2015, p. 121–128.

[32] Dey, T, Sun, J. Defining and computing curve-skeletons with medial
geodesic function. In: Proc. ACM SGP. 2006, p. 143–152.

[33] Jalba, A, Kustra, J, Telea, A. Surface and curve skeletonization of large
3D models on the GPU. IEEE TPAMI 2013;35(6):1495–1508.

[34] Jalba, A, Sobiecki, A, Telea, A. An unified multiscale framework for
planar, surface, and curve skeletonization. IEEE TPAMI 2015;38(1):38–
45.

[35] Schaefer, S, Yuksel, C. Example-based skeleton extraction. In: Proc.
SGP. Eurographics; 2007, p. 153–162.

[36] Zheng, Q, Sharf, A, Tagliasacchi, A, Chen, B, Zhang, H, She↵er, A,
et al. Consensus skeleton for non-rigid space-time registration. Comput
Graph Forum 2010;29(2):635–644.

[37] Jerripothula, KR, Cai, J, Lu, J, Yuan, J. Object co-skeletonization with
co-segmentation. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR. IEEE Computer Society; 2017, p. 3881–3889.

[38] Kalogerakis, E, Hertzmann, A, Singh, K. Learning 3D mesh segmenta-
tion and labeling. ACM Trans Graph 2010;29(4):1–11.

[39] Sidi, O, van Kaick, O, Kleiman, Y, Zhang, H, Cohen-Or, D. Unsu-
pervised co-segmentation of a set of shapes via descriptor-space spectral
clustering. ACM Trans Graph 2011;30(6):126:1–126:9.

[40] Chaudhuri, S, Kalogerakis, E, Guibas, LJ, Koltun, V. Probabilistic rea-
soning for assembly-based 3D modeling. ACM Trans Graph 2011;30(4).

[41] Golovinskiy, A, Funkhouser, TA. Consistent segmentation of 3D models.
Computers & Graphics 2009;33(3):262–269.

[42] Wu, Z, Wang, Y, Shou, R, Chen, B, Liu, X. Unsupervised co-
segmentation of 3D shapes via a�nity aggregation spectral clustering.
Computers & Graphics 2013;37(6):628–637.

[43] Hu, R, Fan, L, Liu, L. Co-segmentation of 3D shapes via subspace
clustering. Comput Graph Forum 2012;31(5):1703–1713.

[44] Wu, Z, Shou, R, Wang, Y, Liu, X. Interactive shape co-segmentation
via label propagation. Computers & Graphics 2014;38:248–254.

[45] Wang, Y, Asafi, S, van Kaick, O, Zhang, H, Cohen-Or, D, Chen, B.
Active co-analysis of a set of shapes. ACM ToG 2012;31(6):165:1–10.

[46] Guo, K, Zou, D, Chen, X. 3D mesh labeling via deep convolutional
neural networks. ACM Trans Graph 2015;35(1):3:1–3:12.

[47] Wang, P, Gan, Y, Shui, P, Yu, F, Zhang, Y, Chen, S, et al. 3d shape
segmentation via shape fully convolutional networks. Comput Graph
2018;70:128–139.

[48] Laga, H, Mortara, M, Spagnuolo, M. Geometry and context for semantic
correspondences and functionality recognition in man-made 3d shapes.
ACM Trans Graph 2013;32(5):150:1–150:16.

[49] van Kaick, O, Xu, K, Zhang, H, Wang, Y, Sun, S, Shamir, A,
et al. Co-hierarchical analysis of shape structures. ACM Trans Graph

2013;32(4):69:1–69:10.
[50] Yümer, ME, Kara, LB. Co-abstraction of shape collections. ACM Trans

Graph 2012;31(6):166:1–166:11.
[51] Xu, K, Zhang, H, Cohen-Or, D, Chen, B. Fit and diverse: set evolution

for inspiring 3D shape galleries. ACM ToG 2012;31(4):57:1–57:10.
[52] Kim, VG, Li, W, Mitra, NJ, Chaudhuri, S, DiVerdi, S, Funkhouser, TA.

Learning part-based templates from large collections of 3D shapes. ACM
Trans Graph 2013;32(4):70:1–70:12.

[53] Fish, N, Averkiou, M, van Kaick, O, Sorkine-Hornung, O, Cohen-Or,
D, Mitra, NJ. Meta-representation of shape families. ACM Trans Graph
2014;33(4):34:1–34:11.

[54] Yümer, ME, Kara, LB. Co-constrained handles for deformation in shape
collections. ACM Trans Graph 2014;33(6):187:1–187:11.

[55] Hesselink, W, Roerdink, J. Euclidean skeletons of digital image and
volume data in linear time by the integer medial axis transform. IEEE
TPAMI 2008;30(12):2204–2217.

[56] Wu, Z, Zeng, M, Qin, F, Wang, Y, Kosinka, J. Active 3-d shape coseg-
mentation with graph convolutional networks. IEEE Computer Graphics
and Applications 2019;39(2):77–88.

[57] Shapira, L, Shalom, S, Shamir, A, Cohen-Or, D, Zhang, H. Contextual
part analogies in 3D objects. Intl J on Comp Vision 2010;89(1-2):309–326.

[58] Ben-Chen, M, Gotsman, C. Characterizing shape using conformal factors.
In: Proc. 3DOR. Eurographics; 2008, p. 1–8.

[59] Belongie, S, Malik, J, Puzicha, J. Shape matching and object recognition
using shape contexts. IEEE TPAMI 2002;24(4):509–522.

[60] Hilaga, M, Shinagawa, Y, Komura, T, Kunii, TL. Topology matching
for fully automatic similarity estimation of 3D shapes. In: Proc. ACM
SIGGRAPH. 2001, p. 203–212.

[61] Rubner, Y, Tomasi, C, Guibas, LJ. The earth mover’s distance as a metric
for image retrieval. Intl J Computer Vision 2000;40(2):99–121.

[62] von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing
2007;17(4):395–416.

[63] Huang, HC, Chuang, YY, Chen, CS. A�nity aggregation for spectral
clustering. In: Computer Vision and Pattern Recognition (CVPR). IEEE;
2012, p. 773–780.

[64] van der Maaten, L, Hinton, G. Visualizing data using t-sne. Journal of
Machine Learning Research 2008;9:2579–2605.

[65] Liu, R, Zhang, H. Segmentation of 3D meshes through spectral clustering.
In: Proc. IEEE Pacific Graphics. 2004, p. 298–305.

[66] Lien, J, Keyser, J, Amato, N. Simultaneous shape decomposition and
skeletonization. In: Proc. ACM SPM. 2006, p. 219–228.

[67] Lee, Y, Lee, S, Shamir, A, Cohen-Or, D. Intelligent mesh scissoring
using 3D snakes. In: Proc. IEEE Pacific Graphics. 2004, p. 279–287.

[68] Lee, Y, Lee, S, Shamir, A, Cohen-Or, D, Seidel, HP. Mesh scissoring
with minima rule and part salience. CAGD 2005;22:444–465.

[69] Attene, M, Falcidieno, B, Spagnuolo, M. Hierarchical mesh segmentation
based on fitting primitives. Visual Computer 2006;22:181–193.

[70] Reniers, D, Telea, A. Hierarchical part-type segmentation using voxel-
based curve skeletons. Visual Computer 2008;24:383–395.

[71] Tierny, J, Vandeborre, J, Daoudi, M. Topology driven 3D mesh hierar-
chical segmentation. In: Proc. SMI. 2007, p. 215–220.

[72] Reniers, D, Telea, A. Part-type segmentation of articulated voxel shapes
using the junction rule. CGF 2008;27(3):1845–1852.

[73] Feng, C, Jalba, A, Telea, A. Improved part-based segmentation of voxel
shapes by skeleton cut spaces. Math Morphol Theory Appl 2015;1:1–20.

[74] Boykov, Y, Veksler, O, Zabih, R. Fast approximate energy minimization
via graph cuts. IEEE Trans Pattern Anal Mach Intell 2001;23(11):1222–
1239.

[75] Lavoué, G, Vandeborre, JP, Benhabiles, H, Daoudi, M, Huebner, K,
Mortara, M, et al. SHREC’12 track: 3D mesh segmentation. In: Proc.
3DOR. 2012,.

Appendix

Here we showcase our method on further results. Fig. 13
presents (co-)segmentation results based on our co-skeletons
building on the per-shape input skeletons computed using Mean
Curvature Flow [8] and Mesh Contraction [7].

12 Preprint Submitted for review /Computers & Graphics (2020)

Fig. 13. Co-skeletonization and co-segmentation results of our method based on Mean Curvature Flow [8] (top half) and Mesh Contraction [7] (bottom

half).

	Introduction
	Related Work
	Skeleton Extraction
	Shape Co-analysis

	Proposed Method
	Skeleton Pruning Details
	Semantic Pruning
	Skeleton Pruning

	Results and Applications
	Co-skeleton results
	Co-skeleton Applications

	Discussion and Conclusion

