
Extraction of Human Body Skeleton Based on 
Silhouette Images 

Jianhao Ding1,2, Yigang Wang2, Lingyun Yu3

1State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou, China 
2Institute of Computer graphics and Image Processing, Hangzhou Dianzi University, Hangzhou, China 

3Department of Mathematics and Computing Science, University of Groningen, The Netherlands

Abstract—Skeleton extraction is essential for general shape rep-
resentation. A typical skeletonization algorithm should obtain 
the ability to preserve original object’s topological and hierarchi-
cal properties. However, most of current methods are high 
memory cost, computationally intensive, and also require compl-
ex data structures. In this paper, we propose an efficient and 
accurate skeletonization method for the skeleton feature points 
extracted from human body based on silhouette images. First, 
the gradient of distance transform is used to detect critical points 
inside the foreground. Then, we converge and simplify critical 
points in order to generate the most important and elegant 
skeleton feature points. Finally, we present an algorithm which 
connects the skeleton feature points and estimates the position of 
skeleton joints.  
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I. INTRODUCTION

Human motion analysis is notoriously difficult because 
human bodies are highly articulated and people tend to wear 
complex textures-clothes which could confuse the important 
features needed to distinguish poses. Human motion analysis 
concerns with some key techniques including action recogni-
tion[1-3] and motion tracking[4-6]. The feature extraction of 
human body from image plays an important role in perfor-
ming some specific tasks. The skeleton extraction is essential 
for general shape representation and will affect system 
performance and algorithms’ complexity. Especially, the 
features concerning with both position and motion of joints 
can help us to determine human body’s pose and motion. The 
wide range of applications shows the comprehensive useful-
ness of reducing patterns to skeleton-joints representations, 
which can be attributed to the need of processing a reduced 
amount of data. The necessary properties of a skeletonization 
algorithm need to be accurate and robust to noise and can 
generate a connected skeleton in order to preserve its 
topological and hierarchical properties. However, most of the 
methods are computationally intensive and require a complex 
data structure[7-9]. 

The structure of this paper is given as below. Previous work 
in the area of extracting skeleton is introduced in section II. In 
section III and IV we describe two essential works including 
skeleton points detection and skeletonization respectively, 
which are the main contributions in our paper. Experimental 

results and discussions are given in section V. At last we draw 
our conclusions. 

II. RELATED WORK

Many approaches of skeletonization have been proposed 
throughout the past decades. Most of skeletonization algori-
thms can be simply classified into two essential types. 

One type is referred to as thinning algorithms. The thinning 
methods[10,11] used iterative algorithm to delete successive 
layers of pixels on the boundary of the pattern until only a 
skeleton remains, while keeping the topological structure of 
pixels. The deletion or retention of a pixel would depend on 
the configuration of pixels in a local neighborhood. As the 
skeleton generated by thinning can not ensure its accuracy and 
smoothness, it might also need further processing[12]. Tao 
Ju[13] computed skeletons of volumetric models by alternat-
ing thinning and a skeleton pruning routine. 

Alternatively, the distance transformation is to convert a 
binary image into another image which provides each object 
pixel a value corresponding to the minimum distance from the 
background. Generally the algorithm based on distance transf-
ormation can obtain accurate skeleton construction but can’t 
guarantee the connectivity of skeleton. Choi[14] proposed a 
skeletonization method based on a signed sequential Eucli-
dean distance map. They had to compute a set of point pairs 
along the object boundary, which are the most closed contour 
points to the pixel. As a result, they can fast extract linear 
skeleton but can’t guarantee the connectivity when the branch 
of object is very small. Ding[15] presented a novel method 
utilizing the distance transform, which the skeleton was 
obtained by growing with the restriction of one pixel width 
from the skeleton seed point, and the connectivity was ensured 
though growing processing. In order to extract skeleton, 
Melada[16] combined the thinning with Euclidean distance 
transformation. However it might result noisy branch and also 
destroyed the connectivity. Liu[17] proposed a fast algorithm 
to track the contour using Euclidean distance maps from outer 
to inner. But the skeleton joints were not estimated in their 
paper.

III. SKELETON POINTS DETECTION

The objective of this step is to obtain the position of the joints 
in the silhouette image finally, which is similar to Fan[18]
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works. But our algorithm is easier to get the skeleton and 
more robust for localizing skeleton joints. We utilize the gra-
dient of distance transform to detect critical points from 
silhouette images. Additionlly, the joints position was not 
estimated in their paper. 

A.  The gradient of distance transform 
According to the definition of skeleton and distance trans-
form, the value of distance transform on skeleton points 
should be greater than their neighbors[19]. The extraction of 
skeleton is to find the ridge lines of objects. To obtain the 
ridge lines, we may need to explore the local features such as 
the gradient of distance transform image. 

Suppose that the image distance transform is ,( , )DT x y

0 0( , )DT x y  denotes the distance transform value in the pixel 
. The gradient of distance transform is denoted as 0 0( , )p x y

( , )DT DT
DT

x y
, so the norm of gradient vector is: 

2 2| | ( ) ( )DT DTDT
x y

Apparently ridge lines should locate in those smaller | |DT
points. However the number of points is too large to generate 
the linear skeleton directly. 

B.  Extracting Local Maximum Points and Critical Points 
Definition 1 Local Maximum Points(LMP)  is the 
distance transform at 

( )DT p
p , Q  is the set of 8-connected neigh-

bors of p . If ( ) ( )DT p DT q  for , we define the 
point 

q Q
p  is a local maximum point of distance transform. 

In terms of this definition, the LMP are the latent skeleton 
points. Fig. 1(a) shows the LMP denoted with yellow color. It 
is obvious that the LMP have equal distance transform values 
in some connected regions according to the definition 1 and 
the transitivity of connected relation.  
Definition 2 Critical Points(CP): CP are the LMP whose 
| |DT  is minimum value point among its connected 
neighbors. 

        
Figure 1. (a) Local maximum of DT               (b) Critical points 

We can easily obtain the critical points with one-pixel 
wide in the distance transform image in terms of this 
definition. Fig. 1(b) shows the position of critical points 
denoted in red color. Apparently, the critical points locate the 

position where these pixels have smaller | |DT . Therefore, 
we can suppose that the critical points are a subset of image 
skeleton. After connecting these critical points in some 
specific constraint condition, the algorithm can generate linear 
skeleton. However, comparing with skeleton joints, the 
number of critical points is too large. It will be very hard to 
connect them correctly when we face to so large set of scatter 
points. In this case, we would need to extract the feature 
points from the critical points further. 

C. Detecting Skeleton Feature Points 
Definition 3 Skeleton Feature Points(SFP): Considering a 
critical point as the center of a circle, we can determine the 
tangent circle C  of silhouette edges for this point. We 
suppose the cps , which , as meaning of the critical 
points set within the range of the circle C . Then we will just 
discard all points belong to cp  and only remain the center 
point of C , which will be referred as the skeleton feature 
point. 

cps C

s

According to the definition 3, we traverse the rest critical 
points with the same operation until no overlay regions of 
tangent circles for critical points left. The skeletonization 
process will benefit from different aspects offered by this 
simplification mechanism, such as reduced critical points. 

IV. SKELETONIZATION

As the skeleton feature points we got in the section 3 are 
dispersive and irregularity, it is difficult to match or track 
these scatter points directly. Therefore, we need connecting 
the skeleton feature points and estimating joints.  

A.  Connecting the skeleton feature points 
The objective of this step is to connect the feature points 
together in some specific routine.  

We define a constraint condition to avoid any point to be 
incorporated when searching the successive feature points to 
be skeletonization. The constraint condition is very reasonable 
that any lines connecting two points must locate on the 
foreground. It means any pixel satisfied , where ( ) 0DT p
p  is a pixel on lines.  

Figure 2. The definition of search direction from root point 

We consider the current point as parent point and search the 
closest points satisfying the constraint condition as child 
points. Initially the point with maximum distance transform 
which generally located on body’s chest is the root point. Its 

72



four children points are from four directions consisting of left 
direction, right direction, up direction and down direction 
respectively, as the fig. 2 shows. The search direction is deter-
mined by the slope information of the line connecting with the 
root point.  

In each skeleton growing step, the algorithm will find the 
closest skeleton feature point which satisfied the constraint 
condition to the current point. If this point joins the skeleton, 
it will be deleted from the skeleton feature points set so as to 
avoid being searched repetitively. If no points being found 
any more, we refer the last point as an end point or leaf point. 
After reaching the leaf point, the algorithm will go back to the 
parent point and search from another child point. The algo-
rithm repeats the process till the feature skeleton points list is 
empty to generate a tree of skeleton feature points finally. 

B. Estimating joints 
Here is a detailed description of the skeleton joints estimation. 
The skeleton of human body is a set of rigid parts which are 
joined by joints. The research of the anthropotomy[20] has 
indicated that, for different bodies, the proportions of body 
parts are approximately the same. For this reason, we can take 
a standard human skeleton model as an example, which is 
shown in fig. 3, and estimate the position of joints. 

The skeleton feature points are tied together in a tree 
structure in the previous section. We traverse the tree of 
skeleton feature points to find the leaf points and the crossing 
points firstly, which have more than one child. From then on, 
the path distance from some given point to leaf point can be 
easily computed along to the connected skeleton feature 
points. The upper leaf point is considered as head joint. 
According to the shoulder direction and width proportion to 
the body height, we can obtain the shoulder joints easily from 
the root points. In the same way, we can determine the elbow 
joints from shoulder joints according to the length proportion 
of the upper arm to the total arm. Before computing two knee 
joints, we must determine the waist joint. Obviously the waist 
joint is the first point with two children in the down direction 
from the root point. Starting from the waist joint, the two knee 
joints are computed through the anthropotomy proportion. 
Finally we get all joints position of the standard dummy 
skeleton we defined and denote the joints position using 
yellow circles, as the fig. 4(e) shows. 

V.  RESULTS AND DISCUSSIONS

We have performed a number of experiments on single human 
body silhouette images with different styles and different 
poses. Fig. 4 shows our experiment results, including raw 
silhouette images, local maximum points, critical points, 
skeleton feature points and skeleton joints. Experiments show 
that the proposed method is satisfying. TABLE I lists the 
relevant number of the pixel points in the process of skeleton-
ization, including local maximum points, critical points, 
skeleton feature points and skeleton joints, which images 
resolution are 640 480 .

TABLE I. THE QUANTITY OF DIFFERENT FEATURES

LMP         CP        SFP       SJ 
image1        825         159        58         13 

              image2        735         116        39         13 
              image3        936         214        56         13 

But the results are unsatisfied and even encounter some 
mistakes when the joints are hidden or kept out. That’s because 
our approach uses the uniform scales of the human body parts 
to determine the position of the inner joints such as elbow and 
knee joints, there might cause some errors between the scales 
of the different bodies. In the subsequent work, we will solve 
hidden problem and estimate the 3D joints position[21,22] 
utilizing probabilistic model and multiple views methods. shoulder

elbow

knee

waist

head
neck

wrist

ankle

 Human motion is a complex pattern, this method must 
resolve the problems firstly, extracting the precision of the 
human silhouette from the complex background. Alternatively, 
how to determine the positions of the joints that are hidden or 
kept out is another formidable problem. 

VI. CONCLUSIONS

In this paper, we have presented a method for articulated-pose 
identification from the silhouette images of human body. A 
dummy skeleton is extracted like the reality skeleton of the 
human from the silhouette images by using the gradient of 
distance transform, then the position of joints are determined 
by using the knowledge of the anthropotomy. Experiments 
show that the method can estimate the positions of joints 
based on the right human silhouette. The method has no 
restrictive presupposition compared with others. 

Figure 3. The standard human skeleton model 

REFERENCES

[1] Z. Zhang, Y. Hu, S. Chan, and L.T.Chia, “Motion context: A new 
representation for human action recognition”, In ECCV, 2008(4), pp. 
817-829. 

[2] L. Wang, D. Suter, “Learning and matching of dynamic shape 
manifolds for human action recognition”, IEEE Transactions on Image 
Processing, 2007, 16(6), pp. 1646-1661. 

[3] Efros, A. Berg, G. Mori, and J. Malik, “Recognizing action at a 
distance”, In ICCV, 2003, pp. 726-733. 

[4] D. Vlasic, I. Baran, W.Matusik, and J. Popovi´c, “Articulated mesh 
animation from multi-view silhouettes”, ACM Trans.Graph, 2008, 
27(3),  pp. 1-9. 

[5] G. Cheung, S. Baker, and T. Kanade, “Shape-from-silhouette across 
time part ii: Applications to human modeling and markerless motion 
tracking”, Int. J. of Computer Vision, 2005, 63(3), pp. 225-245. 

[6] T. Drummond, R. Cipolla, “Real-time tracking of highly articulated 

73



structures in the presence of noisy measurements”, In Int. Conf. on 
Computer Vision, 2001, pp. 315-320. 

[7] P. Dimitrov, C. Phillips, K. Siddiqi, “Robust and efficient skeletal 
graphs”, In: Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition, Hitton Head Island,USA: IEEE: 2000, pp.417-423. 

[8] I. Bitter, A.E. Kaufman, M. Sato, “Penalized distance volumetric 
skeleton algorithm”, IEEE Trans. on Visualization and Computer 
Graphics, 2001, 7(3), pp. 195-206. 

[9] Y. Ge, J. M. Fitzpatrick, “On the generation of skeletons from discrete 
euclidean distance maps”, IEEE Trans. on Pattern Analysis and 
Machine Intelligence, 1996, 18(11), pp. 1055-1066. 

[10] C. Ma, S. Wan, “Parallel Thinning Algorithms on 3D (18, 6) Binary 
Images”, Computer Vision and Image Understanding, 2000, 80(3), pp. 
364-378. 

[11] W. Xie, R.P. Thompson, R. Perucchio, “A topology-preserving parallel 
3D thinning algorithm for extracting the curve skeleton”, Pattern 
Recognition, 2003, 36(7), pp. 1529-1544. 

[12] Che Wu-Jun, Yang Xun-Nian, Wang Guo-Zhao, “A dynamic approach 
to skeletonization”, Journal of Software, 2003, 14(4), pp.818-823. 

          ( , , , “ ”, , 2003, 14(4), 
818-823). 

[13] T. Ju, M. Baker, W. Chiu, “Computing a family of skeletons of 
volumetric models for shape description”, Computer-Aided Design, 
2007, 39(5), pp. 352-360. 

[14] W. Choi, K. Lam, W. Siu, “Extraction of the Euclidean skeleton based 
on a connectivity criterion. Pattern Recognition”, 2003, 36(3), pp. 721- 
729.  

[15] Ding Yi, Liu Wen-Yu, Zheng Yu-Hua, “Hierarchical connected 
skeletonization algorithm based on distance transform”, Journal 

Infrared and Millimeter Waves, 2005, 24(4), pp. 281-285. 
, , , “ ”, 

, , , .
[16] Y. Mekada, J. Toriwaki, “Anchor point thinning using a skeleton based 

on the Euclidean distance transformation”, Proceedings of the 16th 

International Conference on Pattern Recognition, 2002, pp.923-926. 
[17] Liu Xiang-Bin, Zou Bei-Ji, Sun Jia-Guang, “Fast Euclidean Distance 

Transform Based on Contour Tracking”, Chinese Journal of Computers, 
2006, 29(2), pp. 317-323.  
( , , , “ ”,

, 2006, 29(2), 317-323). 
[18] Bin Fan, Zengfu Wang, “Pose Estimation Of Human Body Based On 

Silhouette Images”, Proc. of ICIA’2004. 
[19] Liu Jun-Tao, Liu Wen-Yu, Wu Cai-Hua,Yuan Liang, “A New Method 

of Extracting Objects’ Curve-skeleton”, Acta Automatica Sinica, 2008, 
34(6), pp. 617-622. 
( , , , , “ ”,

, , .
[20] The compilation group of the anthropotomy, “Anthropotomy”, Beijing 

Higher Education Publish House, 1997. 
[21] A. Agarwal, B. Triggs, “Recovering 3D human pose from monocular 

images”, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 2006, 28(1), pp. 44-58. 

[22] F. Guo, G. Qian, “Learning and inference of 3D human poses from 
Gaussian mixture modeled silhouettes”, In Proceedings of the 18th 
International Conference on Pattern Recognition (ICPR ’06), vol.2, pp. 
43-47. 

(a) raw silhouette                  (b) local maximum points                 (c) critical points                    (d) skeleton feature points                  (e) skeleton joints 

Figure 4.  Experimental results of human motion with different style and different pose 
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